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AFIT-ENP-DS-18-M-076
Abstract

Pulsed excitation on the two-photon Cs 62S 1/2 −→ 72D3/2,5/2 transition results in

time-resolved fluorescence at 697 nm and 672 nm. The rates for fine structure mixing

between the 72D3/2,5/2 states have been measured for helium and argon rare gas collision

partners. The mixing rates are very fast, 1.26 ± 0.05 × 10−9 cm3/(atom sec) for He and

1.52 ± 0.05 × 10−10 cm3/(atom sec) for Ar, driven by the small energy splitting and large

radial distribution for the valence electron. The quenching rates are considerably slower,

6.84± 0.09× 10−11 cm3/(atom sec) and 2.65± 0.04× 10−11 cm3/(atom sec) for He and Ar,

respectively. The current results are placed in context with similar rates for other alkali-rare

gas collision pairs using adiabaticity arguments.

Pulsed excitation on the two-photon Cs 6 2S 1/2 −→ 8 2D3/2, 5/2 transition results in time-

resolved fluorescence at 601 nm. The rates for fine structure mixing between the 8 2D3/2, 5/2

states have been measured for helium and argon rare gas collision partners. The mixing

rates are very fast, 2.6± 0.2× 10−9 cm3/(atom s) for He and 5.2± 0.4× 10−10 cm3/(atom s)

for Ar, about 2-3 times faster than for the Cs 7 2D5/2 
 7 2D3/2 relaxation. The quenching

rates are also rapid, 1.07 ± 0.04 × 10−10 cm3/(atom s) and 9.5 ± 0.7 × 10−11 cm3/(atom s)

for He and Ar, respectively. The rapid fine structure rates are explained by the highly

impulsive nature of the collisions and the large average distance of the valence electron

from the nucleus. Quenching rates (inter-multiplet transfer) are likely enhanced by the

closely spaced, 9 2P levels.

Stimulated emission on the ultraviolet and blue transitions in Cs has been achieved

by pumping via two-photon absorption for the pump transition 62S 1/2 → 72D5/2,3/2. The

performance of the optically-pumped cesium vapor laser operating in ultraviolet and blue

has been extended to 650 nJ/pulse for 387 nm, 1.3 µJ/pulse for 388 nm, 200 nJ/pulse for

455 nm and 500 nJ/pulse for 459 nm. Emission performance improves dramatically as the
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cesium vapor density is increased and no scaling limitations associated with energy pooling

or ionization kinetics have been observed.
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TWO-PHOTON EXCITATION OF CESIUM ALKALI METAL VAPOR

72D, 82D KINETICS AND SPECTROSCOPY

I. Introduction

Diode Pumped Alkali Lasers (DPALs) combined approach for high power and multi-

wavelength output offer a unique benefit to military applications, to include laser weapons,

not found in other laser systems [95]. Diode laser bars are used to pump the D2 (historical

designation for DPAL pump transition) 2S 1/2 →
2 P3/2, and collisional energy transfer to the

spin-orbit split 2P1/2 energy state leads to lasing on the D1 (historical designation for DPAL

lasing transition) 2P1/2 →
2 S 1/2 transition in potassium (K), rubidium (Rb), or cesium (Cs)

vapor [102]. A rubidium DPAL was first demonstrated in 2003 [72] and in less than 10

years, these laser systems have been scaled to kilowatt power levels [15, 102], analytic

lasing models have been developed [47, 48, 135] and operating DPAL wavelengths have

been verified to span the atmospheric transmission window [101, 106].

For DPAL lasing on the D1
2P1/2 →

2 S 1/2 transition, scaling output power and system

efficiency depend on pump sources that closely match the center wavelength of the alkali D2

transition to efficiently couple to the spectrally narrow bandwidth of the atomic transitions

and sufficient pump intensity to bleach ground state alkali atoms to achieve an optical gain-

to-loss ratio within the laser cavity to lase on the D1 transition [71]. Additionally, rapid

collision-induced spin-orbit mixing between the 2P1/2,3/2 fine structure states is critical to

prevent bottlenecking of the laser cycle [71] and mixing rates for the first excited 2P1/2,3/2

states for K, Rb and Cs haven been documented in the literature [41, 66, 99]. Mixing

cycle times of 74 ps were reported in potassium using helium as the rare gas collision

partner, 380 times faster than the D1, 4P1/2 → 4S 1/2, radiative lifetime [54]. Spin-orbit
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mixing rates induced by rare gases are smaller in Rb, requiring higher pressures, from 10

atm [131] up to 25 atm for Rb-Helium (He) [9]. For Cs, the spin-orbit mixing rates are

smaller and require hydrocarbon buffer gas [15, 65, 128] to provide sufficient population

transfer between Cs 6P3/2 � 6P1/2. While hydrocarbons have shown promising results

as a buffer gas due to their high spin-orbit mixing and low quenching cross sections,

under certain conditions, these gases can break down leaving deposits on cell windows

resulting in poor beam quality [145]. A key assessment of the DPAL system performance

requires temperature dependent rate coefficients for fine-structure mixing processes. For

this dissertation work, experiments used rare gases He and Argon (Ar) as collision partners

with Cs alkali to measure spin-orbit mixing rates and add to and re-validate previous Cs

n2D spin-orbit mixing rate measurements with rare gas collision partners [55, 76, 77].

Measurements of spin-orbit mixing rates of alkali-metal atoms in collisions with rare

gases have been ongoing for the past 50 years [10–12, 27, 37, 41, 44, 53, 55, 57, 66, 68, 77,

78, 83, 85, 90, 98, 99, 112, 120, 121, 130, 144]. Recent experimental focus has shifted to

measuring higher-lying Rydberg alkali n2D states and alkali-metal to alkali-metal collisions

[12, 31, 53, 55, 76, 77, 108, 123, 125, 130]. Since the 1960s, when alkali spin-orbit mixing

rates measurements began in earnest, a key goal which still exists today was to develop a

theory and associated first principle physics model that describes the interaction between

the two colliding atoms and could predict the sizes of the various cross sections [66]. While

theoretical foundations for predicting the cross sections of non-adiabatic collisions are

ongoing, recent work using adiabaticity arguments [38] organized alkali spin-orbit cross

sections according to trends observed experimentally by Gallagher [41], Krause [66], and

Elward-Berry [37]. This study uses these same adiabaticity arguments to explain measured

results and extend the alkali adiabaticity database for Cs in [38] to include first-ever spin-

orbit mixing rates for Cs 72D5/2,3/2 with He and Ar buffer gases, revalidated Cs 82D5/2,3/2

2



with these same buffer gases and extend the database to include Cs Rydberg alkali n2D rare

gas collision partners [55, 76, 77].

Optically-pumped alkali vapor lasers have also been developed using single photon

excitation of higher lying P-states, stimulated Raman processes, two-photon excitation

of alkali S and D states, and electric quadruple excitation on S-D transitions [94].

Using pump sources to excite higher P and D-states in alkali vapors allows exploration

of alternative emission wavelengths extending from ultraviolet (UV) to far infrared.

Alternative wavelengths from these optically-pumped alkali lasers are desirable for several

applications including underwater communication [19, 29, 30, 84, 119], beacons and

illuminators [40, 84, 102], and infrared countermeasures [29, 30, 84, 119, 139].

An additional focus area of this research is to explore DPAL’s alternate wavelengths

in an effort to understand the feasibility of the alkali laser’s potential use in an integrated

military weapon system [23, 129]. For example, DPAL’s high output power and wavelength

lasing agility make DPAL a potential laser candidate for an overall directed countermeasure

system. This dissertation explores the kinetics and ultraviolet laser dynamics in optically-

pumped cesium (Cs) alkali vapor in the excited low-lying D states. This is an additional

rationale for focusing on cesium’s 72D and 82D spin-orbit mixing rates (k12, k21)

measurements. These two states were chosen given the mid-wave infrared, short-wave

infrared, visible and ultraviolet wavelength transitions from the respective excited state

back to Cs 62S 1/2 ground state. For the ultraviolet laser output, lasing is observed and

characterized from the Cs 72D state using the two-photon pump transition 62S 1/2 →

72D5/2,3/2

There are three research focus areas for this dissertation study. First, pulsed excitation

on the two-photon Cs 62S 1/2 −→ 72D3/2,5/2 transition results in time-resolved fluorescence

at 697 nm and 672 nm. The rates for fine structure mixing between the 72D3/2,5/2 states

have been measured for helium and argon rare gas collision partners. The mixing rates are

3



very fast, 1.26±0.05×10−9 cm3/(atom sec) for He and 1.52±0.05×10−10 cm3/(atom sec)

for Ar, driven by the small energy splitting and large radial distribution for the valence

electron. The quenching rates are considerably slower, 6.84± 0.09× 10−11 cm3/(atom sec)

and 2.65± 0.04× 10−11 cm3/(atom sec) for He and Ar, respectively. The current results are

placed in context with similar rates for other alkali-rare gas collision pairs using adiabaticity

arguments.

Second, the rates for fine structure mixing and quenching of the moderately

excited 8 2D5/2 and 8 2D3/2 states of cesium under collision with argon and the more

impulsive helium have been measured using two-photon pulsed excitation and time-

resolved fluorescence techniques. The pressure dependence for the eigenvalues of the rate

matrix yield very rapid rate coefficients of 2.6±0.2×10−9 cm3/(atom s) for He and 5.2±0.4×

10−10 cm3/(atom s) for Ar, are nearly three times faster than for the Cs 7 2D5/2 
 7 2D3/2

relaxation. The quenching rates are also rapid, 1.07 ± 0.04 × 10−10 cm3/(atom s) and

9.5±0.7×10−11 cm3/(atom s) for He and Ar, respectively. The rapid fine structure rates are

explained by the highly impulsive nature of the collisions and the large average distance of

the valence electron from the nucleus. Quenching rates (intra-multiplet transfer) are likely

enhanced by the closely spaced, 9 2P levels. The observed rates are compared with the

predictions from time dependent perturbation theory.

Third, stimulated emission on the ultraviolet and blue transitions in Cs has been

achieved by pumping via two-photon absorption for the pump transition 62S 1/2 →

72D5/2,3/2. The performance of the optically-pumped cesium vapor laser operating in

ultraviolet and blue has been extended to 650 nJ/pulse for 387 nm, 1.3 µJ/pulse for 388 nm,

200 nJ/pulse for 455 nm and 500 nJ/pulse for 459 nm. Performance improves dramatically

as the cesium vapor density is increased and no scaling limitations associated with energy

pooling or ionization kinetics have been observed.
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II. Background and Literature Review

2.1 Diode Pumped Alkali Laser (DPAL)

Despite an optically-pumped potassium vapor laser proposed by Schawlow and

Townes in 1958, it was not until 2003 and 2005 when the first efficient lasing events in

pulsed and continuous wave in Rubidium (Rb) and Cesium (Cs) vapors, respectively, were

achieved [139]. Several comprehensive DPAL reviews [42, 71, 102, 136, 139] outline the

benefits of the high quantum efficiency, gaseous gain medium, reduced thermal issues,

diode pumping and scalability to high output powers.

The DPAL is a three-level laser employing an alkali vapor as the gain medium [71].

Optical excitation on the D2 transition occurs between the ground n2S 1/2 state and the

excited n2P3/2 state where n, the radial quantum number, takes the values for n = 2, 3, 4,

5, 6 for the alkalis lithium (Li), sodium (Na), potassium (K), Rb and Cs, respectively. A

population inversion between the n2P1/2 and ground states is achieved by rapid collisional

relaxation and the DPAL laser transition from the n2P1/2 back to the ground n2S 1/2

electronic level is designated by the historical label D1. A buffer gas mixture at near

atmospheric pressure is typically required to broaden the absorption line shape and induce

the collisional relaxation. This three level system is outlined below in Figure 2.1.

DPAL performance is optimized when spin-orbit relaxation, with the help of a buffer

gas (usually a rare gas such as helium, argon, krypton and/or small molecular hydrocarbon

molecules), is much faster than the excitation transition rate [71]. Analytic quasi-two level

analytic models has been developed and used to study DPAL kinetics and to investigate

loss mechanisms [20, 46, 89, 103, 119, 133, 135]. The interactions that occur within the

DPAL gain cell can be complex and lead to multiple deleterious processes as outlined in

Oliker et al. [89].
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Figure 2.1: DPAL energy levels (ground n2S 1/2 and excited n2P3/2 and n2P1/2 levels), pump

(D2) and laser (D1) transitions.

A major emphasis of DPAL research to date has been scaling the alkali laser to

higher laser output power [102, 139]. Significant results include 10 W output power for

a continuous wave (cw) Cs D1 transition (62P1/2 → 62S 1/2) using 500 torr of ethane buffer

gas [138], 17 W output power for a cw Rb D1 transition (52P1/2 → 52S 1/2) using 600 torr

of ethane buffer gas [141], 28 W output power for a pulsed Rb D1 transition using 2100 torr

of He buffer gas [145], 16 W output power for a pulsed K D1 transition (42P1/2 → 42S 1/2)

using 600 torr of He buffer gas [140], ∼1 kW output power for a cw Cs D1 transition [15],

and 1.5 kW pumped potassium (K) DPAL with a slope efficiency of 50% [102].

In addition to high power output, Zhdanov and Knize [139] outline and discuss

several additional benefits of the DPAL laser. One focus is the spectral diversity of

DPALs operating wavelengths. Several articles describe alkali laser lasing or amplified

spontaneous emission for various spectral bands extending from visible [21, 119], near

infrared [137], mid-wave infrared and long-wave [103]; however, very few experimental
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results have been reported on DPAL ultraviolet (UV) transition [24, 28, 75, 91, 97]. Given

the benefits of one laser, or a laser consisting of various alkali gases, having the capability

to lase from spectral bands ranging from UV to long wave infrared may prove beneficial to

military operations.

The need for high power lasers with diverse lasing transition outputs cannot be

overstated. One immediate need is to use lasers to help counter emerging air-to-air and air-

to-ground missile threats [56]. By 2020, with respect to laser countermeasure techniques,

defeating next generation missile seekers may require a laser (or suite of lasers) with

in-band lasing requirements for UV, visible, short-wave infrared (SWIR) and mid-wave

infrared (MWIR) with average powers ranging from 10s to several 100s Watts to jam

and/or damage seeker optics/electronics [23, 129]. Table 2.1 depicts percent atmospheric

transmissions of possible DPAL alkali laser emissions taken from a previous study [103]

and Rb and Cs blue and UV laser emissions for mid-latitude summer conditions for a nose-

to-nose air engagement at 25 kft for various close-in conditions (3, 6 and 10 nautical miles).

Table 2.1 is just a subset of the potential DPAL transitions; however, in general, the laser

emissions span the atmospheric window and exhibit high transmission values except where

laser lines fall in key absorption lines for oxygen (O2), carbon dioxide (CO2) and water

vapor (H2O).

2.2 Alkalis

To date, of the alkalis listed in Table 2.2, only potassium (K), rubidium (Rb) and

cesium (Cs) have been used to create a three-level DPAL laser system. Lithium (Li) and

sodium (Na) DPAL variants have not been achieved and are problematic, as they approach

a two level system due to the close energy spacing of their respective n(= 2, 3)2P3/2

and n(= 2, 3)2P1/2 states. The challenge in pumping DPALs efficiently is maintaining

the narrow alkali gain cell absorption band (on the order of 0.01 nm) while increasing

power. In addition, recent diode pump laser advancements for K, Rb and Cs DPALs
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Table 2.1: Atmospheric transmissions of select DPAL alkali laser emissions for potassium

(K) rubidium (Rb) and cesium (Cs) for mid-latitude summer conditions for an air-to-air

engagement at 25 kft.

Atmospheric path transmission

Alkali Transition Wavelength (µm) 3 NM 6 NM 10 NM

K 42D5/2,3/2 → 52P3/2 3.73 0.98 0.96 0.94

62S 1/2 → 52P1/2,3/2 3.63, 3.62 0.99, 0.98 0.99, 0.96 0.99, 0.93

52D3/2 → 52P1/2,3/2 1.82, 1.83 0.53, 0.20 0.29, 0 0.12, 0

Rb 52D3/2 → 62P1/2,3/2 5.04, 5.24 0.98, 0.34 0.96, 0.11 0.93, 0.03

72S 1/2 → 62P1/2,3/2 3.85, 3.97 0.99, 0.99 0.98, 0.98 0.97, 0.96

62D3/2 → 62P1/2,3/2 2.01, 2.04 0.92, 0.98 0.85, 0.97 0.77, 0.95

62P3/2,1/2 → 52S 1/2 0.420, 0.421 0.93, 0.93 0.86, 0.86 0.78, 0.78

72P3/2,1/2 → 52S 1/2 0.358, 0.359 0.87, 0.87 0.75, 0.76 0.62, 0.63

Cs 62D3/2 → 72P1/2,3/2 12.14, 15.57 0.99, 0 0.99, 0 0.99, 0

82S 1/2 → 72P1/2,3/2 3.92, 4.22 0.85, 0 0.73, 0 0.59, 0

72D3/2 → 72P1/2,3/2 2.34, 2.44 0.75,0.99 0.56, 0.99 0.38, 0.98

92S 1/2 → 72P1/2,3/2 1.94, 2.01 0.13, 0.93 0, 0.86 0, 0.77

72P3/2,1/2 → 62S 1/2 0.455, 0.459 0.95, 0.95 0.90, 0.90 0.84, 0.84

82P3/2,1/2 → 62S 1/2 0.387, 0.388 0.90, 0.90 0.81, 0.82 0.71, 0.71
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[60, 63, 64, 81], these same diode advancements can, in principle, be extended towards

creating powerful laser sources for the Na and Li pump transition wavelengths. Besides

the alkali atoms, Table 2.2 also contains the radial quantum number (n), pump and laser

transitions, spin-orbit splitting energy, ∆E, between n2P3/2,1/2 electronic states and the

quantum energy defect, ∆E/Epump, where Epump =hc/λpump. The quantum defect is the

fractional amount of waste heat deposited in the alkali gain medium per atomic excitation.

For comparison, the alkali quantum energy defects are much lower than the standard solid

state lasers Nd (0.27) and Yb (0.10) [71]. Only cesium was used during the present

research, and information on this element is presented below. Tables 2.2, 2.3, 2.4, and

2.5 list many of the physical parameters for the cesium D1 and D2 transitions.

Table 2.2: Pump and laser transition wavelengths and spin-orbit splitting energies [71].

Alkali n D2 λpump (nm) D1 λlaser (nm) ∆E (cm−1) ∆E/Epump

Li 2 670.96 670.98 0.34 0.000023

Na 3 589.16 589.76 17.20 0.00101

K 4 766.70 770.11 57.70 0.0044

Rb 5 780.25 794.98 237.50 0.019

Cs 6 852.35 894.59 554.10 0.047

The number density of alkali in the system is based on the vapor pressure at the surface

of the alkali pool. The relationship between temperature and pressure is given by the

equations below for 133Cs for temperatures below melting (solid phase, Equation (2.1)),

and temperature above melting point (liquid phase, Equation (2.2)) [4]:

log10(Pv) = 2.881 + 4.711 −
3999

T
(2.1)

log10(Pv) = 2.881 + 4.165 −
3830

T
(2.2)
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where the vapor pressure, Pv, is given in Torr and the temperature (T) given in Kelvin (K).

Using the ideal gas law, the vapor pressure is converted into a number density. The 133Cs

number density curve is shown in Figure 2.2. As seen in Figure 2.2, the Cs number density

increases rapidly for increasing temperature. In the experiments conducted in this study,

the Cs gain cell temperatures ranged from 25°C to 200°C which translates to a Cs number

density of 5.13 × 1010 cm−3 and 1.82 × 1015 cm−3, respectively. This is a five orders of

magnitude change in the Cs number density in this 175°C change.

Figure 2.2: Combined Cs number density curves as a function of temperature [118]. The

blue line represents the Rb density before melting point, shown as (- - -), with the red line

representing the Cs density after the melting point.
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Table 2.3: 133Cs Physical Properties [118].

Atomic Number Z 133

Relative Natural Abundance η(133Cs) 100% [74]

Nuclear Lifetime τn (stable) [74]

Atomic Mass m 132.905 451 931(27) amu [17]

Density at 25°C ρm 1.93 g/cm3 [74]

Melting Point TM 28.5°C [74]

Boiling Point TB 671°C [74]

Nuclear Spin I 7/2

Table 2.4: 133Cs D2 Transition Optical Properties [118].

Frequency ω0 2π·351.725 718 50(11) THz [8, 134]

Transition Energy ~ω0 1.454 620 563(35) eV

Wavelength (Vacuum) λvac 852.347 275 82(27) nm

Wavelength (Air) λair 852.120 532(26) nm

Wave Number (Vacuum) kL/2π 11 732.307 104 9(32) cm−1

Lifetime τ 30.405(77) ns [14, 45, 116, 127]

Natural Line Width (FWHM) Γ 2π·5.234(13) MHz
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Table 2.5: 133Cs D1 Transition Optical Properties [118].

Frequency ω0 2π·335.116 048 807(41) THz [6, 8]

Transition Energy ~ω0 1.385 928 495(34) eV

Wavelength (Vacuum) λvac 894.592 959 86(10) nm

Wavelength (Air) λair 894.355 151(27) nm

Wave Number (Vacuum) kL/2π 11 178.268 160 7(14) cm−1

Lifetime τ 34.791(90) ns [45, 116, 127]

Natural Line Width (FWHM) Γ 2π·4.575(12) MHz
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2.3 DPAL Spin-orbit Rate Kinetics

The DPAL kinetics describe the rates of various reactions within the system. The

two points of concern are the spin-orbit (SO) mixing rate, also known as relaxation, and

the quenching rates. Since this study focuses on the alkali n 2D states (for n = 7, 8), the

SO mixing rate determines how fast the alkali transitions between the excited 2D5/2 and

2D3/2 states. The quenching rates correspond to the rate of transitions between 2D5/2 →

2S1/2 and 2D3/2 →
2S1/2 through non-radiative means which removes population that could

otherwise contribute to the laser system. The transition for exciting the alkali n 2D states

by two-photon absorption with a buffer gas is illustrated in Figure 2.3. In a DPAL, the goal

is to have the highest possible SO rate while minimizing the quenching rate. This study

examines the SO mixing rates and cross sections for the Cs 72D5/2,3/2 and 82D5/2,3/2 states.

Figure 2.3: Alkali energy levels for n2D fine structure collisional mixing where Γ2 and Γ1

are the radiative decay rates, Q2 and Q1 are the collisional quenching rates and R21 and R12

are the collisional mixing rates.
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High precision spectroscopy of atomic alkali structures plays an important role in

determining and verifying transition rates, atomic cross sections, collisional quenching

rates, spin-orbit rates and validated models that attempt to predict these complex atomic

interactions. Excitation from the cesium 62S 1/2 to 72D states by two-photon transitions

has been performed to determine hyperfine coupling constants for 72D states [59, 73] and

indirectly researching cesium blue lasing as a result of transitions from the 72D to 72P states

and eventually back to the 62S 1/2 state [21, 119]. However, despite the work done on the

72D hyperfine structure, the fine-structure spin-orbit relaxation and collisional quenching

of the 72D5/2,3/2 states have not been measured for any rare gas or hydrocarbon collision

partners. Lifetimes for the 72D5/2,3/2 have been reported as 88.9 ns and 89.4 ns, respectively

[124]; however, to the best of our knowledge, mixing rates and/or cross sectional areas with

buffer gases have not been reported for the 72D states. It is the intent of part of this research

to measure the spin-orbit and collisional quenching rates for the 72D states.

The fine structure mixing in cesium with rare gas collision partners has been studied

previously for the n = 6 − 8 2P3/2, 1/2 and n = 8 − 14 2D5/2, 3/2 states [33, 41, 55, 67, 68, 77,

85, 98, 115]. The prior cw laser induced florescence (LIF) work by Jackowska [55] and

Lukaszewski [77] for the n = 8 and 9 2D states exhibit cross-sections at 29% and 14% of

the quantum defect values, respectively. In the present work we re-examine the 8 2D3/2, 5/2

mixing rates induced by helium and argon using pulsed lifetime techniques. The combined

advantages of pulsed and cw energy transfer studies are often useful in rate validation [125].

2.3.1 Pulsed Experiment.

The transitions considered for exciting the 72D3/2,5/2 and 82D3/2,5/2 levels of the cesium

atom by two-photon absorption with a buffer gas are illustrated in Figure 2.3. The buffer

gases used in this study were helium (He) and argon (Ar). The radiative decay rates from

states |2〉 , |1〉 are labeled as Γ2 and Γ1. The collisional mixing rates from state |2〉 → |1〉

and |1〉 → |2〉 are labeled as R21 and R12, respectively. The mixing rates R12 and R21 adhere
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to the principle of detailed balance

R12

R21
=

g2

g1
e−∆E/kbT = ρ, (2.3)

where g2 = 6 and g1 = 4 represent the degeneracies of the respective 72D5/2,3/2 and

82D5/2,3/2 atomic states, ∆E is the energy difference between these states (21 cm−1 for the

72D and 11 cm−1 for the 82D states), kb is the Boltzmann constant and T is the temperature.

The spin-orbit mixing rate is related to the thermally averaged collision cross-section,

σ21, via the average relative speed of the collision pair, v:

R21 = (n)(σ21)(v) = (n)k21, (2.4)

where n is the rare gas density and k21 is the spin-orbit mixing rate coefficient. The

average relative speed of the collision pair, v, is given by v = 8kbT/πµ where T is the cell

temperature and µ is the reduced mass of the alkali and buffer gas pair. Last, the collisional

quenching rates associated with the depopulation of states |2〉 and |1〉 are labeled Q2 and

Q1.

The time evolution of the population densities in states |2〉 and |1〉 after pulsed

excitation is described by the first-order system of differential equations:

dn2(t)
dt

= −(Γ2 + R21 + Q2)n2(t) + R12n1(t), (2.5)

dn1(t)
dt

= −(Γ1 + R12 + Q1)n1(t) + R21n2(t) (2.6)

Defining α2 = −(Γ2 + R21 + Q2) and α1 = −(Γ1 + R12 + Q1), the general solution takes

the form of a double exponential

n1(t) = Aeλ+t + Beλ−t, (2.7)

where λ+, λ− are given by the eigenvalues [21, 108, 112],

λ± =
1
2
{−(α1 + α2) ±

√
(α1 − α2)2 + 4R12R21} (2.8)
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and A and B are constants to be determined.

For initial conditions where the near instantaneous pump populates the 72D5/2 state,

n1(t = 0) = 0 and n2(t = 0) > 0, the solution for the parent, n2, and satellite, n1 states

become:

n1(t) = A
(
expλ+t − expλ−t

)
(2.9)

n2(t) =
A

(
(α1 + λ+) expλ+t − (α1 + λ−) expλ−t

)
R21

(2.10)

For high rare gas densities where R12 − R21 � Γ1 − Γ2 and assuming Q1 = Q2 = Q,

Equation (2.8) can be approximated in this limit as [21, 108, 112]

λ+ =
Γ1 + Γ2

2
−

(
ρ − 1
ρ + 1

)
Γ1 − Γ2

2

+ σQ(n)(v), (2.11)

λ− =
Γ1 + Γ2

2
+

(
ρ − 1
ρ + 1

)
Γ1 − Γ2

2

+ [σQ + σ21(ρ + 1)](n)(v), (2.12)

where ρ is given by Equation (2.3), σ21 by Equation (2.4), σQ = Q/[(n)(v)] and we define

kQ = σQ(n) as the quenching rate coefficient.

2.3.2 Adiabaticity Theory.

In 1966, Krause used adiabaticity arguments to describe interaction between an alkali-

metal atom and a rare gas collision partners [66]. Krause determined that Rb and Cs alkali

interactions with rare gases were considered adiabatic due to low relative velocity and large

spin-orbit splitting and further validated using the Massey adiabaticity parameter as defined

in [37]. This is not the case for rare gas collisions with lithium (Li), sodium (Na), and

potassium (K) where Krause determined these interactions to be non-adiabatic but did not

develop a theory to explain the relationship between adiabaticity and magnitude of the spin-

orbit cross section. In 1968, Gallagher extended Krauses work by developing an empirical
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relationship between measured spin-orbit cross sections for the first excited P states for

Rb and Cs and reduced mass-adjusted temperature [41]. Besides the empirical relationship

developed in Gallagher’s work, adiabaticity theory was not advanced beyond Krause’s 1966

study. In 1980, Elward-Berry applied the Massey adiabaticity parameter as part of analysis

of Li first excited P states and rare gas spin-orbit cross sections [37]. Combined with

Krause and Gallagher’s work, the Massey adiabaticity parameter provided a correlation

methodology to organize spin-orbit cross sections for the various alkali-metalrare gas pairs.

In 2017, Eshel et. al. [38] showed collision cross sections for alkali and rare gas spin-

orbit mixing between the n2P3/2 → n2P1/2 energy levels trend strongly with the Massey

parameter [37]. Eshel further develops a theoretical model that captures the temperature

dependence of the spin-orbit mixing rates for all measured alkali P state collisions with

rare gas partners and captures the adiabaticity trends observed by Gallagher [41], Krause

[66] and Elward-Berry [37].

As detailed in [38, 39], the extent to which the alkali doublet transfer collision with

the rare gas species is sudden or adiabatic depends on the interatomic velocity as well as

the spin-orbit splitting [41]. For the alkali-rare gas collision the adiabaticity is defined as

[37]

ζ =
τc

τν
=

∆L
v

(2.13)

where τc is the duration of the collision (atom-atom interaction time), τν is the period

of oscillation defined by the spin-orbit splitting
(
τν = 1/ν = h/∆ f s

)
, ∆ f s is the spin-orbit

splitting, L is the interaction length and v is the mean relative speed. Using the results of

[39], we set the interaction length, L, to 10Å despite not knowing how the potential energy

surfaces trend.

The energy-transfer probability per collision can also be defined by dividing the

experiment cross section, σexp, by the quantum-defect cross section, σQD. Since the alkalis

are well represented by hydrogenic approximations [124], the expectation value of the
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electron position, 〈r〉, is given by

〈r〉 = aµ (n∗)2
(
1 +

1
2

(
1 −

l(l + 1)
(n∗)2

))
(2.14)

where aµ is the effective Bohr radius of the alkali, l is the angular momentum quantum

number and n∗ is the effective quantum number given by

n∗ =

√
ERyd

T − E
(2.15)

In Equation (4.7) ERyd is the Rydberg energy (109737.32 cm−1), T is the ionization energy

and E is the energy level corresponding to the effective quantum number. For example, the

effective quantum number for 82D5/2,3/2 are 5.53 and 5.52, respectively.

The fine structure transition probability, whether it be 2P3/2 →
2 P1/2 or 2D5/2 →

2 D3/2,

can be defined by the ratio of the experimentally measured cross section, σexp and the

quantum defect cross section, σQD,

P =
σexp

σQD
(2.16)

with

σQD = π
(
〈r〉 + rRg

)2
(2.17)

where 〈r〉 is the expectation value of the Cs atom’s electron position and rRg is the effective

radius of the rare gas atom [39]. Using this probability instead of the experimental cross

section improves the correlation with adiabaticity [38].

Figure 2.4 shows the natural log probabilities for collisions pairs organized by

adiabaticity. Cross sections were derived from the fine structure mixing rates measured

for Li (2p) [37], Na (3p) [57, 90, 99], K (4p) [27, 57, 66, 83], K (5p) [11], Rb (5p)

[10, 66, 99, 112], Rb (6p) [85, 114], Rb (7p) [85], Cs (6p) [66, 68], Cs (7p) [85], and Cs

(8p) [98] in collisions with rare gases at a fixed temperature. Figure 2.4 shows the He and

Ne data form lower bound curve, regardless of alkali-metal collision partner. This study

extends the analysis in [38] to include higher order Cs 72D and 82D and higher-lying Cs

Rydberg states [55, 77].
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Figure 2.4: Alkali probabilities versus adiabaticity with fixed interaction length, L = 10Å.

The alkalis are depicted by ◦, Li; �, Na; �, K; 4, Rb; O, Cs with colors corresponding to

He (black), Ne (red), Ar (green), Kr (blue), and Xe (magenta).

2.4 Cs UV and blue laser emission study

Alternative wavelengths from these optically-pumped alkali lasers are desirable for

several civilian and military applications. In 1958 Schawlow and Townes [109] proposed

an optically-pumped potassium laser pumped in the blue (42S 1/2 → 52P3/2) with lasing at

2.71 µm (52P3/2 → 52S 1/2) or 3.14 µm (52P3/2 → 32D3/2). In 1962, Rabinowitz, et al. [104]

proposed an similar lasing scheme for Cs for pump a Cs vapor in the UV (62S 1/2 → 82P1/2)

with lasing at 7.18 µm (82P1/2 → 82S 1/2) or 3.20 µm (82P1/2 → 62D3/2). These cascading

lasing systems were followed in 1972 by a tunable potassium infrared laser operating at

25.4 µm using four-wave mixing [117]. Recently efforts have demonstrated for K, Rb

and Cs alkali lasers operating in the blue via both single and two-photon pump schemes

[2, 3, 19, 82, 103, 111, 119].
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Recent DPAL trends is to extend alkali alternative wavelengths to the blue-violet or

ultraviolet beam lasing [29, 30, 40, 132]. Recent measurements in [40] reported ultraviolet(
82P3/2 −→ 62S 1/2

)
and blue

(
72P3/2 −→ 62S 1/2

)
emissions after using a two-photon pumping

the 62S 1/2 −→ 72D5/2 transition. Maximum powers achieved in this experiment were 700

nJ and 150 nJ for the ultraviolet and blue emissions, respectively for pump pulse power of

0.8 mJ [40]. Additional modulation studies conducted in [40] led to 4-wave mixing as the

method for producing these ultraviolet and blue emissions. Current alkali UV analysis does

not adequately address competing cascading and/or 4-wave mixing methods as leading to

the blue-violet lasing. A full analysis of the kinetic mechanism is required to explore

the contributions of cascade and 4-wave mixing to blue-violet lasing. Ultraviolet lasers

have a variety of uses including material cutting and drilling, micro-lithography, grating

fabrication, and eye surgery. Military uses include light detection and ranging for helicopter

survivability, battlefield awareness, and data storage [122].

Lasers that can generate light directly in the near-ultraviolet (300 nm to 400 nm)

directly include gallium nitride laser diodes, solid-state bulk lasers based on cerium-doped

crystals, neodymium-doped fluoride fibers, xenon-fluoride excimer lasers, argon ion lasers,

nitrogen lasers and free electron lasers [50]. Indirect generation of UV light can be achieved

by nonlinear frequency conversion such as 355 nm based on frequency tripling the output of

a 1064 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) or neodymium-doped

yttrium vanadate Nd:YVO4 laser [51].

Recently Gai et al. [40] used a Nd:YAG laser to pump an ND6000 dye laser to excite

the Cs transition 62S 1/2 → 72D5/2 and characterized the resulting 72P3/2 → 62S 1/2 blue

(455.6 nm) and 82P3/2 → 62S 1/2 UV (387.7 nm) laser emissions. Maximum powers

achieved in this experiment were 700 nJ and 150 nJ for the UV and blue emissions,

respectively, for pump pulse power of 0.8 mJ [40]. Additional modulation studies

conducted in [40] led to four-wave mixing as the method for producing these ultraviolet
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and blue emissions. This study extends the work in [40] and characterizes the blue and UV

laser emissions resulting from pump transitions 62S 1/2 → 72D5/2,3/2.
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III. Spin-orbit Relaxation of Cesium 72D in Mixtures of Helium and Argon

3.1 Introduction

Despite an optically pumped potassium vapor laser being proposed by Schawlow and

Townes in 1958 [109], it was not until 2003 when the first efficient, diode-pumped lasing in

rubidium (Rb) and cesium (Cs) vapors were achieved [70, 72]. The Diode Pumped Alkali

Laser (DPAL), a three-level laser system, is pumped by diode bars or stacks through the

alkali’s D2 transition to its 2P3/2 state, then collisionally relaxed to the 2P1/2 state where it

lases in the near-infrared (NIR) along the D1 transition. Lasing is achieved at 770 nm (K),

795 nm (Rb) and 894 nm (Cs). DPAL performance is optimized when spin-orbit relaxation,

with the help of a buffer gas (usually a rare gas or small hydrocarbon), is much faster than

the optical excitation rate [46, 48, 71]. Several comprehensive DPAL reviews [42, 71, 139]

outline the benefits of this laser’s high quantum efficiency, gaseous gain medium, reduced

thermal issues, diode pumping and scalability to high output powers.

Several optically pumped alkali lasers operating at alternative wavelengths have also

been demonstrated and require excitation above the first 2P3/2 excited state [5, 19, 21,

22, 28, 52, 93, 103, 113, 119]. Optically pumped alkali lasers at far/mid infrared, near

infrared, visible and ultraviolet wavelengths may be useful as beacons or illuminators for

laser weapons, or for infrared countermeasures [92]. Like the traditional DPAL, these

higher energy states require knowing the transition rates, optical cross sections, collisional

quenching and spin-orbit rates to understand the competing and cascading laser transitions.

One such excitation scheme, depicted in Figure 3.1, involves two-photon direct excitation

of the Cs ground state to Cs 72D5/2,3/2 followed by primary infrared and visible transitions

to the Cs 82P, Cs 72P and Cs 62P and secondary ultraviolet, blue and NIR transitions to the

Cs 62S 1/2 ground state. Indeed, blue lasers have been demonstrated by optically pumping in

the near infrared using this scheme [103, 119]. However, the fine-structure spin-orbit and
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collisional quenching rates of the Cs 72D5/2,3/2 states have not been reported. Excitation

from the Cs 62D1/2 −→ 72D5/2,3/2 states by two-photon transitions has been performed to

determine hyperfine coupling constants for Cs 72D states [59, 73].

A thorough investigation of fine-structure mixing rates database for 82P, 72P and

62P states in alkali vapor collisions with rare gases reveal that fine-structure mixing rates

increase with deceased energy splitting [39] and is consistent with previous adiabaticity

studies [41]. Although [39] does not include high-lying excited alkali state such as Cs 72D;

it is predicted that Cs 72D will exhibit more impulsive collisions with rare gases leading

to faster spin-orbit rates. In this work, time resolved laser-induced fluorescence techniques

are used to measure fine-structure mixing rates for the Cs 72D5/2,3/2 states with He and Ar

rare gas collisions partners.

Figure 3.1: Cs energy level diagram.
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Figure 3.2: Cesium energy levels for the 72D fine structure collisional mixing.

3.2 Kinetic Analysis

The transitions considered for exciting the 72D3/2,5/2 levels of the cesium atom by two-

photon absorption with a buffer gas are illustrated in Figure 3.2. The radiative decay rates

from states |2〉 , |1〉 to the ground state |0〉 is labeled as Γ20 and Γ10. The collisional mixing

rates from state |2〉 −→ |1〉 and |1〉 −→ |2〉 are labeled as R21 and R12, respectively. The mixing

rates R12 and R21 adhere to the principle of detailed balance

R12

R21
=

g2

g1
e−∆E/kbT = ρ, (3.1)

where g2 = 6 and g1 = 4 represent the degeneracies of the respective 72D5/2,3/2 atomic

states, ∆E is the energy difference between these states (21 cm−1 for the 72D states), kb is

the Boltzmann constant and T is the temperature. For these same states and a temperature

of 50°C, ρ = 1.65.
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The spin-orbit mixing rate is related to the thermally averaged collision cross-section,

σ21, via the average relative speed of the collision pair, v:

R21 = (n)(σ21)(v) = (n)k21, (3.2)

where n is the rare gas density and k21 is the spin-orbit mixing rate coefficient. For Cs at

50°C with collision partners He and Ar, the mean relative velocities are 1.3×105 cm/sec for

[Cs,He] and 4.7 × 104 cm/sec for [Cs,Ar]. Last, the collisional quenching rates associated

with the depopulation of states |2〉 and |1〉 to the ground state |0〉 are labeled Q20 and Q10.

The time evolution of the population densities in states |2〉 and |1〉 after pulsed

excitation is described by the first-order system of differential equations:

dn2(t)
dt

= −(Γ20 + R21 + Q20)n2(t) + R12n1(t), (3.3)

dn1(t)
dt

= −(Γ10 + R12 + Q10)n1(t) + R21n2(t) (3.4)

Defining α2 = −(Γ20 + R21 + Q20) and α1 = −(Γ10 + R12 + Q10), the general solution

takes the form of a double exponential

n1(t) = Aeλ+t + Beλ−t, (3.5)

where λ+, λ− are given by the eigenvalues [21, 108, 112],

λ± =
1
2
{−(α1 + α2) ±

√
(α1 − α2)2 + 4R12R21} (3.6)

For initial conditions where the near instantaneous pump populates the 72D5/2 state,

n1(t = 0) = 0 and n2(t = 0) > 0, the solution for the parent, n2, and satellite, n1 states

become:

n1(t) = A
(
eλ+t − eλ−t

)
(3.7)

n2(t) =
A

(
(α1 + λ+) eλ+t − (α1 + λ−) eλ−t

)
R21

(3.8)
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For high rare gas densities where R12 −R21 � Γ10 −Γ20 and assuming Q10 = Q20 = Q,

Equation (3.6) can be approximated in this limit as [21, 108, 112]

λ+ =
Γ10 + Γ20

2
−

(
ρ − 1
ρ + 1

)
Γ10 − Γ20

2

+ σQ(n)(v), (3.9)

λ− =
Γ10 + Γ20

2
+

(
ρ − 1
ρ + 1

)
Γ10 − Γ20

2

+ [σQ + σ21(ρ + 1)](n)(v), (3.10)

where ρ is given by Equation (3.2), σ21 by Equation (3.2), σQ = Q/[(n)(v)] and we define

kQ = σQ(n) as the quenching rate coefficient.

The fine structure transition probability can be defined by the ratio of the experimen-

tally measured cross section, σ21 and the quantum defect cross section, σQD,

P =
σ21

σQD
(3.11)

with

σQD = π
(
〈r〉 + rRg

)2
(3.12)

where 〈r〉 is the expectation value of the Cs atom’s electron position and rRg is the effective

radius of the rare gas atom [39]. Since the alkalis are well represented by hydrogenic

approximations [124], the expectation value of the electron position is given by

〈r〉 = aµ (n∗)2
(
1 +

1
2

(
1 −

l(l + 1)
(n∗)2

))
(3.13)

where aµ is the effective Bohr radius of the alkali, l is the angular momentum quantum

number and n∗ is the effective quantum number given by

n∗ =

√
ERyd

T − E
(3.14)

In Equation (3.14) ERyd is the Rydberg energy (109737.32 cm−1), T is the ionization energy

and E is the energy level corresponding to the effective quantum number. The effective

quantum numbers for 72D5/2,3/2 are 4.53 and 4.52, respectively.
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Figure 3.3: Temporally-resolved laser induced fluorescence apparatus.

The extent to which the alkali doublet transfer collision with the rare gas species is

sudden or adiabatic depends on the interatomic velocity as well as the spin-orbit splitting

[41]. For the alkali-rare gas collision the adiabaticity is defined as [37]

ζ =
τc

τν
=

∆L
v

(3.15)

where τc is the duration of the collision, τν is the period of oscillation, ∆ is the spin-orbit

splitting, L is the interaction length and v is the mean relative speed. We choose to set the

interaction length L at 10Å. When the duration of the collision is short, the time dependent

perturbation is not averaged out due to oscillations in the state dynamics and a higher

probability for energy transfer is achieved.

3.3 Experiment

The apparatus for the two-photon kinetic study for the 72D5/2,3/2 −→ 62P3/2,1/2 is shown

in Figure 3.3. A frequency-doubled Quanta-Ray Pro Series pulsed Nd:YAG laser (10 Hz

, 0 − 1 J/pulse, 532 nm) is used to pump a Sirah model PRSC-D-1800 dye laser with
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LDS-765 dye tuned to populate the Cs 72D3/2 or 72D5/2 levels. The dye laser provides

6 − 10 ns pulses in a 1 mm radius spot as the energy is tuned from 0 to 30 mJ/pulse

by varying the Nd:YAG flash-lamp energy. The Cs DPAL cell path is a 12 cm long and

2.54 cm diameter heatpipe [61]. The rare gas species, He or Ar, was monitored by two

MKS Instruments 690A Baratron capacitance manometers with ranges of 1000 Torr and

10 Torr. An aluminum heater block encloses the cell with a Watlow temperature controller

connected to eight cartridge heaters and a thermocouple on a negative-feedback loop to

control the cell temperature. Experiments were conducted at Cs DPAL cell temperatures

of 25°C, 35°C, 40°C and 50°C to vary Cs alkali concentration and minimize the effect of

radiation trapping on the spin-orbit mixing rate.

The target states, Cs 72D3/2 and Cs 72D5/2, are produced by two-photon absorption

of the ground state, Cs 62S 1/2, at wavelengths near 767.8 nm and 767.2 nm, respectively.

The population of each excited state is measured by detecting the fluorescence measured

by the C31034A photomultiplier tube using narrow bandpass filters and a BK 7 bi-convex

lens with a diameter of 50.8 mm and focal length of 88.3 mm to observe two different

transition states, Cs (72D3/2 −→ 62P1/2) at 672.3 nm and Cs (72D5/2 −→ 62P3/2) at 697.3 nm.

A Thorlabs FES0750 shortpass filter with a cutoff wavelength of 750 nm was used to

minimize scattered pump light yet allow over 88% transmission for both 672.3 nm and

697.3 nm fluorescence emissions. For the 672.3 nm emission, a second Andover Corp

670.8 nm filter with center wavelength and 10 nm bandwidth filter was used in conjunction

with the shortpass filter. The 670.8 nm filter has a 66% transmission at 672.3 nm. For

697.3 nm, an Andover Corp 697.3 nm center wavelength filter with a 1 nm bandwidth was

used with the shortpass filter. The tighter bandwidth requirement for 697.3 nm is needed to

reduce fluorescence emissions from the Cs (72D3/2 −→ 62P3/2) transition at 698.3 nm. The

peak transmission for this filter at 697.3 nm is 47%. For each pressure the scattered pump

laser intensity was measured and subtracted from the observed decay profiles by tuning off
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resonance, thereby minimizing the scattered light contribution to 72D states on-resonance

fluorescence signal.

The observed intensities for the 672.3 nm and 697.3 nm emissions, I1 and I2, are

proportional to the concentration of the corresponding emitting states

I1 ∝ [Cs72D3/2−→62P1/2
]d1 ∝ n1d1, (3.16)

I2 ∝ [Cs72D5/2−→62P3/2
]d2 ∝ n2d2, (3.17)

where d1, d2 depend on detection system efficiencies, transition probabilities and

radiometric factors. The fluorescence of the Cs signal consisted of 1000 laser shots summed

averaged using a 3 GHz LeCroy WavePro 7300 oscilloscope.

3.4 Results

To validate that Cs alkali atoms were pumped by two-photon absorption, excitation

spectrum using the time integrated 697 nm and 672 nm fluorescence intensity as the signal

were performed. The spectrum for the cesium cell at 35°C for these two emissions are

shown in Figure 3.4. When monitoring the emission from 72D5/2 at 697 nm a signal is

observed only when directly pumping the same state, confirming that the 1 nm bandpass

filter is sufficient to isolate emission from 72D5/2. When pumping 72D3/2 a weak signal can

be observed from the 72D5/2 state, suggesting minor Cs induced mixing. Very slow scan

across a single feature reveals the ground 62S 1/2 fine structure splitting with incomplete

resolution, consistent with a laser linewidth of about 0.06 cm−1.

All the intensity decay measurements for the He and Ar collision partners were

performed at temperatures6 50°C. As shown in Figure 3.5, temperatures above 75°C result

in longer decay rates caused by radiation being absorbed and remitted before escaping the

heat-pipe.

The time resolved fluorescence from the collisionally populated 72D3/2 state after two-

photon excitation of the 72D5/2 state for various helium pressures is provided in Figure 3.6.
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Figure 3.4: Laser excitation spectra using the time integrated fluorescence intensity at 697

and 672 nm.

Figure 3.5: Emission intensity, I1, from 72D3/2 when pumping the same 72D3/2 state at

several Cs cell temperatures and no added buffer gas. The intensities grow dramatically

with temperature, but have to be normalized to the same value just after the laser pulse to

illustrate the radiation trapping at T > 75°C.
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Figure 3.6: Fluorescence decay curves of the Cs 72D3/2 −→ 62P1/2 emission after excitation

of 72D5/2 at 50°C for helium buffer gas pressures in Torr (a) 100, (b) 50, (c) 15, (d) 7, (e)

2, (f) 1, (g) 0.5, (h) 0.25,(i) 0.1, (j) 0.

The rate for fine structure mixing is very rapid. Even at 0.1 Torr of helium, as significant

population is observed with a peak occurring 60 ns after excitation. At 7 Torr the rise

time is shorter than the pump pulse duration and only the longer quenching decay can be

observed. At the higher pressures the peak signal decreases due to quenching during the

excitation pulse.

For each pressure, the decay curves, such as those in Figure 3.7, were fit to the

double exponential function of Equation (3.7) generating the two eigenvalues. The pressure

dependence of the fit eigenvalues are displayed as Stern-Volmer plots for He in Figure 3.8

and similar curves were analyzed for Ar.

For He, the experimentally calculated spin-orbit rate is derived from the slope of

eigenvalue λ+ as shown in Figure 3.8. The slope is 3.1 ± 0.1 × 10−9 cm3/sec yielding a

fine structure relaxation rate of k21 = 1.26 ± 0.05 × 10−9 cm3/sec. From the slope of λ− we

obtain the quenching rate kQ = 6.84± 0.09× 10−11 cm3/sec. For an average temperature of

40°C, the respective spin-orbit and quenching cross sections are σ21 = 9.6±0.4×10−15 cm2
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Figure 3.7: Emission on 72D5/2 −→ 62P3/2 at 697 nm after excitation on 72D3/2 for Ar

pressures of (a) 50 Torr and (b) 0.7 Torr. A fit to Equation (3.7) is also provided.

Figure 3.8: Stern-Volmer plot of experimentally derived rates based on Equation (3.7)

for Helium at temperatures ≤ 50°C. The solid line is a least-squares linear fit to the

experimentally derived rates.

32



Figure 3.9: The log probabilities are plotted against the calculated adiabaticities where

open and closed symbols represent Cs and He, Ar collisions, respectively for different

energy states. The open and closed circles represent the experimental 72D measurements

from this study.

and σQ = 5.25 ± 0.07 × 10−16 cm2, respectively. The uncertainty in the cross-sections

represent the 95% confidence bounds in the unweighted linear fits. Similarly, for Ar,

the calculated spin-orbit rate is k21 = 1.52 ± 0.05 × 10−10 cm3/sec and the quenching

rate is kQ = 2.65 ± 0.04 × 10−11 cm3/sec. For an average temperature of 40°C, the

respective spin-orbit and quenching cross sections are σ21 = 3.3 ± 0.1 × 10−15 cm2 and

σQ = 5.67± 0.09× 10−16 cm2, respectively. The intercept for the helium Stern-Volmer plot

provides a collisionless lifetime of 148 ± 42 ns, with the lower bound near the radiative

lifetime measurement of 98 ns [79].
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3.5 Discussion

Figure 3.9 shows experimental Cs and He, Ar cross-sections, converted into

probabilities and plotted against their respective adiabaticities. The 72D cross-section

measurements are combined with the Cs - He, Ar collision database (82P, 72P and 62P)

values discdussed in the recent adiabaticity study [39]. The fine structure splitting for Cs

72D is 21 cm−1 compared to the 83 cm−1 for Cs 82P, 181 cm−1 for Cs 72P and 554 cm−1 for

Cs 62P. The current results represent more impulsive, less adiabatic collision conditions,

resulting in higher transfer probabilities. For the same adiabaticity, the high polarizability

of the rare gas collision partners enhances the transfer probability [39]. The atoms’

polarizability increases the interaction length which is directly proportional to adiabaticity.

It is unlikely that the added channel of ro-vibrational excitation in a molecular collision

partner will significantly increase the transfer rate, as has been characterized for Rb 5P

[107]. The rare gas collision probability is already very high.

3.6 Conclusions

Collision induced mixing between the Cs72D5/2,3/2 states is exceptionally fast, driven

by the large radius of the valence electron and small energy splitting. The helium rate

exceeds that for argon by a factor of 7.4 due to both the higher relative speed and the more

impulsive nature of the collision. The quenching rates are moderately fast, but 46 and 16

times slower than the mixing rates for helium and argon, respectively. The rates suggest

efficient lasing may be achieved on several competing transitions.
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IV. Time Resolved Fine Structure Mixing of Cesium 8 2D Induced by Helium and

Argon

4.1 Introduction

The Diode Pumped Alkali Laser (DPAL) was originally conceived in 2003 as an

alternative to existing multi-kilowatt-class laser systems due to its high efficiency and

beam-quality [69, 70]. This three-level laser system uses a high pressure (1-10 atmosphere)

buffer gas to provide spin-orbit mixing of the first excited 2P states of the alkali vapor

with diode pump-relax-lasing cycle times as short as 74 psec [54]. DPAL performance is

optimized when spin-orbit relaxation is faster than the optical excitation rate [46, 48, 71].

Energy pooling can lead to the production of higher lying states and additional pump

photons can ionize the gas. The role of ionization in laser performance has been

investigated in particular for the Cs DPAL system [7, 62]. Further analysis of the

degree of ionization depends on collisional relaxation of these higher lying states. More

recently, optically pumped alkali vapor lasers have been demonstrated by excitation of the

higher lying states, producing wavelengths extending from the blue to the mid infrared

[18, 22, 84, 94, 103, 113]. In particular, we have recently demonstrated a scalable mid

infrared Cs laser pumped by two-photon excitation of the 6 2S 1/2 −→ n 2D5/2, 3/2 states [94].

Threshold is low enough to allow diode pumping. This system may find applications as

a source for infrared counter measures [92, 96]. However, the cascade lasing mechanism

depends on rapid fine structure mixing and modest quenching rates. A full assessment of

these emerging laser systems requires accurate rate data.

Fine structure mixing in atomic alkali metal vapors upon collisions with rare gases has

been studied extensively and several excellent reviews have been published [38, 39, 67, 88,

125]. The rates depend critically on the size of the fine structure energy gap, reduced mass

and polarizability of the collision pair, and degree of electronic excitation. The temperature
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dependence of the rates has received less attention, with the early work in the lowest P states

of Cs and Rb providing the greatest temperature range [41]. In an attempt to correlate the

large experimental data base with a few parameters, we have recently developed a scaling

law based on adiabaticity using time dependent perturbation theory [38, 39]. Collisions

of the higher lying Cs D states with helium are particularly impulsive. The fine structure

splitting for the 6 2P1/2, 3/2 state is 554 cm−1 (highly adiabatic), but the higher lying n 2D3/2, 5/2

splitting ranges from 97.6 − 7.1 cm−1 for n = 5 − 9 (highly impulsive).

The fine structure mixing in cesium has been studied previously for the n = 6 −

8 2P3/2, 1/2 and n = 6, 8 − 14 2D5/2, 3/2 states [31, 33, 41, 55, 67, 68, 77, 85, 98, 115]. The

work prior to 2003 is nicely reviewed in reference [125]. More recently, the mixing rates

for the n = 6 and 7 2D5/2, 3/2 states have been measured with cross-sections for helium

of 0.54 and 0.96 × 10−14cm2, or 11 − 13% of the quantum defect cross-section values,

respectively [31, 35]. Quantum Defect Theory (QDT) [110] provides analytic expressions

for expectation value of the valence electron’s nuclear distance, accounting for incomplete

screening of the inner electrons. We use QDT to provide an upper bound on the mixing rate

and convert observed rates to probabilities per collision, as defined in Equation (4.7) below.

The prior continuous wave (cw) laser-induced fluorescence (LIF) work by Jackowska

[55] and Lukaszewski [77] for the n = 8 and 9 2D states exhibit He cross-sections at

29% and 14% of the quantum defect values, respectively. The decline in probability for

the n > 8 states is particularly interesting. The rates for quenching, or inter-multiplet

mixing (l-mixing), appear to increase relative to fine structure mixing (j-mixing) as the

principal quantum number increases, [77] and could pose efficiency limitations for the

optically pumped lasers. The influence of polarizibility on the Cs-rare gas mixing rates is

of particular importance in selection of laser buffer gas [39, 77]. In the present work we

re-examine the 8 2D3/2, 5/2 mixing rates induced by helium and argon using pulsed lifetime
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techniques. The complementary advantages of pulsed and cw energy transfer studies are

often useful in rate validation [125].

4.2 Methods

The pulsed laser induced fluorescence apparatus using two-photon excitation to pump

the Cs 6 2S 1/2 −→ 8 2D3/2, 5/2 is shown in Figure 4.1. A frequency-doubled Quanta-Ray Pro

Series pulsed Nd:YAG laser (10 Hz , 0−1 J/pulse, 532 nm) is used to pump a Sirah model

PRSC-D-1800 dye laser with LDS-722 dye tuned to populate the Cs 82D3/2 or 82D5/2 levels

at 719.1 or 718.8 nm. The dye laser provides 6 − 10 ns pulses in a 1 mm radius spot as

the energy is tuned from 0 to 30 mJ/pulse by varying the Nd:YAG flash-lamp energy.

The pump intensity of 100 MW/cm2 is more than sufficient to bleach the two-photon

absorption. By using excitation through the virtual state rather than the two wavelength

sequential excitation through the 62P state as used in the prior work [55], the effects of

radiation trapping for emission terminating on the 62P levels is reduced. The Cs cell is a

12 cm long and 2.54 cm diameter heatpipe [61]. The alkali melt pool is maintained at T =

45°C, yielding a saturated vapor cesium density of 3.09 × 1011 cm−3. Radiation trapping

is not apparent in this apparatus until T > 75°C [35]. The rare gas species, He or Ar,

were monitored by two MKS Instruments 690A Baratron capacitance manometers with

ranges of 1000 Torr and 10 Torr. An aluminum heater block encloses the cell with a

Watlow temperature controller connected to eight cartridge heaters and a thermocouple on

a negative-feedback loop to control the cell temperature.

The fluorescence of the excited 8 2D3/2 state is collected by an f /1.7 lens in an end-

on configuration and detected by a C31034A photomultiplier tube using a bandpass filter

to limit emission to the Cs 8 2D3/2 −→ 6 2P1/2 transition at 601.1 nm. The 10 nm band

pass is sufficient to isolated emission from the 8 2D3/2 state, since the 8 2D5/2 −→ 6 2P1/2

transition is forbidden and the two transitions from 8 2D5/2,3/2 to 6 2P3/2 occur at 621.76 and

621.31 nm. The filter dramatically improves throughput relative the monochromator used
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Figure 4.1: Temporally-resolved laser induced fluorescence apparatus and cesium energy

levels for the 8 2D fine structure collisional mixing.

in the older study [55]. A 700 nm shortpass filter was also used to minimize scattered pump

light. Scattered pump laser intensity was measured off resonance and subtracted from the

observed decay profiles.

4.3 Results

The time resolved fluorescence from the collisionally populated 8 2D3/2 state after two-

photon excitation of the 8 2D5/2 state for various helium pressures is provided in Figure 4.2.

Emission from this collisionally populated state is minimal for no added helium and

depends only on Cs - Cs collisions. The rate for fine structure mixing induced by helium is

very rapid. With the addition of just 0.1 Torr of helium, significant population is transfered

from the pumped 8 2D5/2 state within 60 ns. At 1 Torr the rise time is shorter than the

pump pulse duration and only the longer quenching decay can be observed. At the higher

pressures the peak signal decreases due to quenching during the excitation pulse.

The emission signal is quite strong, with a signal-to-noise ratio exceeding 50, as seen

in the logarithmic plot of Figure 4.3. The decay is well monitored for time scales exceeding

7 multiples of the slowest eigenvalue. The long-term decay is clearly single exponential at

the lower pressure and no indication of radiation trapping is present.
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Figure 4.2: Fluorescence decay curves of the Cs 8 2D3/2 −→ 6 2P1/2 emission after excitation

of 8 2D5/2 at 50°C for helium buffer gas pressures in Torr (a) 100, (b) 50, (c) 10, (d) 5, (e)

2.5, (f) 1, (g) 0.8, (h) 0.5, (i) 0.3, (j) 0.1 (k) 0.

To extract mixing and quenching rates from the observed temporal profiles, solutions

are sought to the first order, system of linear differential rate equations [35]:

n2(t)
dt

= − (Γ2 + Q2 + R21) n2 (t) + R12n1 (t) (4.1)

n1(t)
dt

= − (Γ1 + Q1 + R12) n1 (t) + R21n2 (t) (4.2)

for the populations n2 = [Cs(8 2D5/2)] and n1 = [Cs(8 2D3/2)]. In these equations the total

radiative rates from the pumped 82D5/2 and observed 82D5/2 states to all lower levels, are

denoted Γ2 and Γ1. Similarly, the quenching rates are defined as Q2 = k2M and Q1 = k1M

where M = the rare gas concentration. The fine structure mixing rates obey the detailed

balance:

R12 = R21
g2

g1
e−∆E/kbT = R21ρ (4.3)
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Figure 4.3: Emission on 8 2D3/2 −→ 6 2P1/2 at 601 nm after excitation on 8 2D5/2 for Ar

pressures of (a) 200 Torr and (b) 0.6 Torr. A fit to Equation (4.1) is also provided.

and are proportional to the rare gas density, R21 = k21M. The eigensolutions after

instantaneous, selective laser excitation of 82D5/2 for the satellite population is:

n1(t) = A
(
eλ+t − eλ−t

)
(4.4)

The observed intensities are proportional to the emitter concentration and the amplitude A

is not required to define the decay rates. For high rare gas densities where R12 − R21 >>

Γ1 − Γ2 and assuming quenching rates independent of J, k2 = k1 = k, the eigenvalues can

be simplified [31, 35, 77, 85] to:

λ+ =
Γ1 + Γ2

2
−

(
ρ − 1
ρ + 1

)
Γ1 − Γ2

2
+ k (4.5)

λ− =
Γ1 + Γ2

2
+

(
ρ − 1
ρ + 1

)
Γ1 − Γ2

2
+ k + (ρ + 1) k21 (4.6)

The rate coefficients can be converted to collision cross-sections, σ, using the average

relative speed of the collision pair, v : k21 = vσ21 and k = vσQ.
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For each pressure, the decay curves, such as those in Figure 4.2, were fit to the

double exponential function outlined in Equation (4.4). The pressure dependence of the fit

eigenvalues are displayed as Stern-Volmer plots for He in Figure 4.4 and Ar in Figure 4.5.

Figure 4.4: Stern-Volmer plot of experimentally derived rates for helium at a temperature

of 45°C. The solid lines are a least-squares linear fits yielding the experimentally derived

fine structure mixing and quenching rates.

For He, the experimentally calculated spin-orbit rate is derived from the slope of

the pressure dependent eigenvalue λ− as shown in Figure 4.4. The slope is 6.5 ± 0.5 ×

10−9 cm3/sec yielding a fine structure relaxation rate of k21 = 2.6 ± 0.2 × 10−9 cm3/sec.

From the slope of λ+ we obtain the quenching rate kQ = 1.07 ± 0.04 × 10−10 cm3/sec. For

an average heat pipe temperature of 45°C, the respective spin-orbit and quenching cross

sections are σ21 = 2.0 ± 0.2 × 10−14 cm2 and σQ = 8.1 ± 0.3 × 10−16 cm2, respectively. The

uncertainty in the cross-sections represent the 95% confidence bounds in the unweighted

linear fits. The upper limit on eigenvalue determination is imposed by the finite dye laser

pulse duration.
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Figure 4.5: Stern-Volmer plot of experimentally derived rates for argon at a temperature of

45°C.

Similarly, for Ar, the calculated spin-orbit rate is k21 = 5.2 ± 0.4 × 10−10 cm3/sec and

the quenching rate is kQ = 9.5 ± 0.7 × 10−11 cm3/sec. For an average temperature of 45°C,

the respective spin-orbit and quenching cross sections are σ21 = 1.10 ± 0.09 × 10−14 cm2

and σQ = 2.0 ± 0.1 × 10−15 cm2, respectively. The intercept for the helium Stern-Volmer

plot provides a collisionless lifetime of 119±57 ns, with the upper bound near the radiative

lifetime measurement of 154 ± 5 ns [80].

4.4 Discussion

The current results for the fine structure mixing cross-sections are compared with

prior observations in Table 4.1 [31, 35, 55, 77]. The corresponding quenching rates are

summarized in Table 4.2. The only prior reported mixing rates for the 82D state agree

favorably with the present results for collisions with Ar. The statistical error in the

current observations is lower, about 9%. Usually the cw intensity analysis used in the

earlier work provides improved signal to noise due to the higher average power from cw

sources. However, the prior work used time integrated intensities from pulsed excitation

and does not realize this duty cycle advantage. The prior work was performed at higher
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temperature, and thus higher Cs density and increased source intensity, but suffered from

reduced throughput of the grating spectrometer. The two results agree within the statistical

error bounds.

Table 4.1: Fine structure mixing cross-section
(
10−14 cm2

)
.

He Ar Reference T(K)

σ21 P = σ21 / σQD σ21 P = σ21 / σQD

6 2D 0.54 ± 0.15 0.069 0.17 ± 0.05 0.0005 [31] 350 ± 20

7 2D 0.96 ± 0.04 0.128 0.33 ± 0.01 0.041 [35] 313

8 2D 2.00 ± 0.20 0.106 1.10 ± 0.09 0.056 this work 318

8 2D 5.52 ± 0.83 0.292 1.33 ± 0.21 0.068 [55] 360

9 2D 5.15 ± 0.77 0.141 1.50 ± 0.27 0.040 [55] 360

10 2D 5.03 ± 1.00 0.078 2.11 ± 0.42 0.032 [77] 353

11 2D 3.30 ± 0.66 0.031 2.63 ± 0.54 0.025 [77] 353

12 2D 2.08 ± 0.54 0.013 2.62 ± 0.67 0.016 [77] 353

13 2D 1.75 ± 0.54 0.007 2.68 ± 0.80 0.011 [77] 353

14 2D 1.07 ± 0.33 0.003 2.60 ± 0.80 0.007 [77] 353

The case of helium requires more attention. The current cross section measurement

is 2.7 times lower than reported in reference [55]. The steady state approach used in

the prior work measures the rate relative to the radiative rate and could be influence by

systematic errors due to radiation trapping. Indeed, considerably higher Cs densities were

employed and the first P state is optically pumped. Trapping should effect both the He

and Ar rate determinations, but diffusion is different for the two gases and it is possible

the Cs density varies between the two cases. In our case, trapping becomes very evident

from multi exponential behavior at long decay times, but is clearly avoided by limiting
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Table 4.2: Quenching cross-section
(
10−14 cm2

)
.

σ12 P = σ12 / σQD σQ Reference T(K)

Cs-He 6 2D5/2 −→ 6 2D3/2 0.54 ± 0.15 0.069 0.026 ± 0.012 [31] 350 ± 20

7 2D5/2 −→ 7 2D3/2 0.96 ± 0.04 0.128 0.0525 ± 0.0007 [35] 313

8 2D5/2 −→ 8 2D3/2 2.00 ± 0.20 0.106 0.0809 ± 0.003 this study 318

Cs-Ar 6 2D5/2 −→ 6 2D3/2 0.17 ± 0.05 0.0005 0.0003 ± 0.0001 [31] 350 ± 20

7 2D5/2 −→ 7 2D3/2 0.33 ± 0.01 0.041 0.0567 ± 0.0009 [35] 313

8 2D5/2 −→ 8 2D3/2 1.10 ± 0.09 0.056 0.203 ± 0.001 this study 318

Cs-Xe 9 2D3/2 −→ 9 2D5/2 2.13 0.055 [76] 360

10 2D3/2 −→ 10 2D5/2 5.78 0.086 [55] 393

11 2D3/2 −→ 11 2D5/2 13.5 0.124 0.0030 ± 0.0003 [34] 393

12 2D3/2 −→ 12 2D5/2 28.9 0.120 0.0044 ± 0.0004 [34] 393

14 2D3/2 −→ 14 2D5/2 18.8 0.052 0.0150 ± 0.0015 [34] 393

15 2D3/2 −→ 15 2D5/2 0.0190 ± 0.0020 [34] 393

Rb-He 9 2D3/2 −→ 9 2D5/2 5.1 ± 1.0 0.08 0.11 ± 0.02 [53] 520

10 2D3/2 −→ 10 2D5/2 4.55 ± 1.50 0.04 0.15 ± 0.02 [53] 520

11 2D3/2 −→ 11 2D5/2 2.2 ± 0.6 0.01 0.29 ± 0.05 [53] 520

15 2D3/2 −→ 15 2D5/2 1.3 ± 0.4 [53] 520

the melt pool temperature. The discrepancy on the helium rates is more likely a result of

the rapid rate, whose rate coefficient is five times greater than Ar. Indeed the prior work

notes the limited low pressure sampling for their He data. Furthermore, quenching during

the unspecified duration of their laser excitation could reduce the integrated intensities and

bias the rate measurement. Finally, it is worth noting that the prior study was unable to

discern the quenching rates, which depend on the intercepts of their integrated intensity

Stern-Volmer plots. We clearly observe rapid quenching from the pressure dependence
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of the slower eigenvalue in Figure 4.2. By directly observing the temporal profiles and

increasing the signal to noise ratio, we believe the current rates are preferred.

The fine structure transition probabilities are defined in Tables 4.1 and 4.2 by the ratio

of the experimentally measured cross section, σ21 and the quantum defect cross section,

σQD,

P =
σ21

σQD
(4.7)

with

σQD = π
(
〈r〉 + rRg

)2
(4.8)

where 〈r〉 is the expectation value of the Cs atom’s electron position and rRg is the effective

radius of the rare gas atom [39]. Since the alkalis are well represented by hydrogenic

approximations [124], the expectation value of the electron position is given by

〈r〉 = aµ (n∗)2
(
1 +

1
2

(
1 −

l(l + 1)
(n∗)2

))
(4.9)

where aµ is the effective Bohr radius of the alkali, l is the angular momentum quantum

number and n∗ is the effective quantum number given by

n∗ =

√
ERyd

T − E
(4.10)

In Equation (4.10) ERyd is the Rydberg energy (109737.32 cm−1), T is the ionization energy

and E is the energy level corresponding to the effective quantum number. The effective

quantum number for 82D5/2,3/2 are 5.53 and 5.52, respectively. The currently measured

probabilities for 82D fine structure mixing are p = 0.106 for helium and less, p = 0.056 for

Ar. The higher probability for helium reflects are more impulsive collision, as discussed

below. The probabilities for quenching are less, but sizeable, p = 0.04 for He and p = 0.02

for Ar.

The extent to which the alkali doublet transfer collision with the rare gas species is

sudden or adiabatic depends on the interatomic velocity as well as the spin-orbit splitting
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Figure 4.6: The log probabilities are plotted against the calculated adiabaticities where

2 - Cs-He, ∗ - Cs-Xe, ◦ - Cs-Kr, 4 - Cs-Ar, and � - Cs-Ne collisions. The black filled

square and triangle represent experimental 72D measurements from [35], The hatched

filled square and triangle represent experimental 82D measurements from [55] and the gray

shaded square and triangle represent 82D measurements from this study.

[41]. For the alkali-rare gas collision the adiabaticity is defined as [37]

ξ =
τc

τν
=

∆L
v

(4.11)

where τc is the duration of the collision, τν is the period of oscillation, ∆ is the spin-orbit

splitting, L is the interaction length and v is the mean relative speed. Using the results of

[39], we set the interaction length, L, to 5Å despite not knowing how the potential energy

surfaces trend.

Figure 4.6 shows experimental Cs and various buffer gas cross-sections, converted

into probabilities and plotted against their respective adiabaticities. The current 82D cross-
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section measurements are incorporated with an extensive Cs - buffer gas collision database

(82P, 72P, 62P and 82 − 152D) discussed in the recent adiabaticity study [39] and extended

to include Cs 72D thru 142D using measured data from [35, 55, 77]. The fine structure

splitting for Cs 82D is 11 cm−1 compared to the 554 cm−1 for Cs 62P at the lower bound

and 1.3 cm−1 for Cs 142D at the upper bound. The current results represent more impulsive,

less adiabatic collision conditions, resulting in higher transfer probabilities up to Cs 82D.

For Cs-He and Cs-Ar collisions, the transfer probabilities decrease starting at Cs 82D and

a similar trend is noticed for the other Cs collision partners as shown in Figure 4.6. This

trend does not represent a collapse of the adiabatic argument for the collision, rather it

shows a failure of the system to account for all the energy levels that will contribute to the

probability. The higher lying states tend to have many nearby states, shown in Figure 4.7.

They are no longer electronically isolated and we would expect the total energy transfer

cross-section to be fully governed by the adiabatic argument whereas a single cross-section

would not. This total cross-section can be represented by the sum of the spin-orbit mixing

cross-section and the quenching cross-section of the state of interest. Unfortunately, all

of the previous work except for [34] did not publish the quenching cross-sections. The

few published quenching cross-sections do show the expected trend of increasing with

increasing excitation. Measured quenching cross-sections [34, 53], σQ, detailed in Table

4.2 show increasing quenching cross-sections as the ratio of the measured spin-orbit cross-

sections to quantum defect cross-sections decreases for Rb-He and Cs-Xe for increasing

n2D states.

Another trend that is seen in Figure 4.6 is the behavior of the probability with

various collision partners. The trend predicted by [39] and observed by [41, 66] is that

the probability should be highest for the Cs-He collision, decrease for Cs-Ne and then

increase slowly from Ar to Xe. This is precisely the behavior that is observed in the energy

transfer probabilities for the Cs-rare gas D-states and arises from the interplay of the relative
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Figure 4.7: Grotrian diagram of electronic states of cesium.

velocity and polarizability of the collision partner. The total cross-sections would also be

expected to share this trend.

Predictions of the temperature dependence for the Cs 82D fine structure mixing rates

are compared with the observations in Figure 4.8. An analytic expression for the probability

of energy transfer in alkali-metal-rare gas collisions was recently derived using time-

dependent perturbation theory [38]. The rate depends principally on the adiabaticity, ξ,

defined in Equation (4.11). When the interaction potential changes rapidly during the

collision (suddenly), the probability for energy transfer is enhanced. The temperature
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dependence of the mixing rate coefficient is [38]:

k21 (T ) =
V2

o L4

2π~2v
ξ−2

(
A2 + B2

)
(4.12)

where

A2 + B2 = 2e−4π2( w
L )2

ξ2
π3

(w
L

)2
ξ2 +

[
1 − 2

√
2π

(w
L

)
ξF

(√
2π

(w
L

)
ξ
)]2

F (x) =
1
2

e−x2
Er f (x)

Vo = magnitude of the interaction potential

L = interaction length

v =
√

8kbT/πµ ≡ average relative speed

w = length scale for the rapidly changing region of the interaction potential

The temperature dependence arises from the velocity dependence of the adiabaticity,

ξ = L/v.

The prediction from Equation (4.12) using L = 5Å, w = 3Å, Vo = 0.1119 Hartree for

He and 0.1221 H for Ar and temperatures of T = 100 − 1200 K is provided in Figure 4.8.

The current and prior Ar mixing rates were determined at somewhat different temperatures,

and the trend is strikingly similar to the prediction from the perturbation theory. For

helium, the collision is very sudden, and the rate coefficient approaches the gas kinetic,

or probability p = 1, limit. The difference in interaction magnitude, Vo, for helium and

argon is small and was obtained from the lowest 6P state [38]. Again, the prior reported

rate for He appears inconsistent with the theoretical prediction.

4.5 Conclusions

Collision induced mixing between the 82D5/2,3/2 states is exceptionally fast, driven by

the large radius of the valence electron and small energy splitting. The helium rate exceeds

that for argon by a factor of 5 due to both the higher relative speed and the more impulsive

nature of the collision. The quenching rates are moderately fast, but 24 and 5 times slower
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Figure 4.8: Temperature scaling for Cs 82D fine structure mixing rates for: (�,�) He and

(N,4) Ar from: (�,4) Reference [55] and (�,N) present work. (−−−) Prediction from

perturbation theory of Equation (4.12) using L = 5Å, w = 3Å, Vo = 0.1119 Hartree for He

and 0.1221 H for Ar and temperatures T = 100 − 1200 K.

than the mixing rates for helium and argon, respectively. The rates suggest efficient lasing

may be achieved on several competing transitions.

These rates are put in context of the previously measured spin-orbit cross-sections for

Cs-rare gas pairs and are shown to agree well. The probability for energy transfer is shown

to decrease with reduced adiabaticity which is in contrast to previous developments [37, 39]
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and is driven by the non-isolated nature of the highly excited D-states. The total cross-

section is still observed to follow adiabatic arguments for the probability of energy transfer.

The probabilities are also seen to share the previously observed trend in the probability with

collision partner.
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V. Ultraviolet and Blue Stimulated Emission from Cs Alkali Vapor Pumped using

Two-Photon Absorption

5.1 Introduction

The Diode Pumped Alkali Laser, a three-level laser system, is pumped by diode bars

or stacks through the alkali’s D2 transition to its 2P3/2 state, then collisionally relaxed to

the 2P1/2 state where it lases in the near-infrared (NIR) along the D1 transition. DPAL

performance is optimized when spin-orbit relaxation, with a buffer gas (usually a rare

gas or small hydrocarbon), is much faster than the optical excitation rate [46, 48, 71].

A cesium (Cs) cw laser demonstrated near 1 kW output at 894.6 nm [15] and 1.5 kW for

a potassium (K) DPAL at 770.1 nm [102], steps towards proving DPAL’s capability as a

high energy class laser; however, the alkali gain medium’s ability to produce various beams

at a variety of wavelengths from ultraviolet through long-wave infrared is a versatility that

requires further study and measurements [40, 100, 113, 119]. Several comprehensive DPAL

reviews [42, 71, 139] outline the benefits of this laser’s high quantum efficiency, gaseous

gain medium, reduced thermal issues, diode pumping and scalability to high output powers.

Several optically-pumped alkali lasers operating at alternative wavelengths have

also been demonstrated and require excitation above the first alkali 2P3/2 excited state

[5, 19, 21, 22, 28, 52, 93, 103, 113, 119]. Ultraviolet and blue emission lasing, have

been reported for K, rubidium (Rb) and Cs. For K, a blue spot at 404 nm was observed

when pumping the K 42S 1/2 −→ 62S 1/2 transition [103]. For a K vapor cell at 553K with

5.4 torr of helium (He) buffer gas, it was reported that the threshold was approximately 1

mJ/pulse and the slope efficiency for the blue beam increased by a factor of 4 as the number

density increased by a factor of 2.5 [103]. It was theorized that both cascade lasing and 4-

wave mixing may both be occurring and may also be in competition with one another for

producing the blue beam [103].
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For Rb, 100 mW of ultraviolet light at 398 nm was measured as a harmonic to 1

W of 794.8 nm beam output in an experiment for a Rb cell temperature of T = 140°C

[97]. As a harmonic of 794.8 nm, the 398 nm output emission can not be explained

by either 4-wave mixing or cascade lasing. Additionally, 9.1 mW of Rb blue emission

420 nm
(
62P3/2 −→ 52S 1/2

)
for a Rb cell temperature of T = 135°C (Rb vapor density,

n = 5 × 1013 cm−3) was measured using two pump lasers at 780 nm (52S 1/2 −→ 5263/2)

and 776 nm (52P3/2 −→ 52D5/2) and explained as a 4-wave mixing process [111]. A two-

photon pump excitation, (52S 1/2 −→ 52D5/2) was used to explore the Rb blue transitions

62P3/2,1/2 −→ 52S 1/2 for temperatures T = 175°C, T = 200°C and T = 250°C [119].

Maximum output power was 3.2 µJ for a pump power of 3.3 mJ and slope efficiencies

increased from 0.03% to 0.5% for Rb as cell temperatures increased from T = 175°C

through 250°C.

Cs blue emission studies performed in [119] showed efficiencies on the order of

0.02 − 0.06% for T = 175 − 200°C for pump transition 62S 1/2 −→ 72D3/2 and blue

emissions for the Cs 72P3/2,1/2 −→ 62S 1/2 transition. For a scaled Cs system, 10 µJ per

pulse was achieved for 100 mW, 4 ns pump pulse at 10 Hz [119]. Recent measurements in

[40] reported Cs ultraviolet
(
82P3/2 −→ 62S 1/2

)
and blue

(
72P3/2 −→ 62S 1/2

)
emissions after

pumping the 62S 1/2 −→ 72D5/2 transition. Maximum powers achieved in this experiment

were 700 nJ and 150 nJ for the ultraviolet and blue emissions, respectively for pump

pulse power of 0.8 mJ [40]. Additional modulation studies conducted in [40] led to 4-wave

mixing as the method for producing these ultraviolet and blue emissions.

Optically pumped alkali lasers at far-,mid-infrared, near-infrared, visible and ultravi-

olet wavelengths may be useful as beacons or illuminators for laser weapons, or for coun-

termeasures [92]. Like the traditional DPAL, these higher energy states require knowing

the transition rates, optical cross sections, collisional quenching and spin-orbit rates to

understand the competing and cascading laser transitions and whether or not 4-wave mix-
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ing is occurring concurrently. One such excitation scheme, depicted in Figure 5.1, uses

Figure 5.1: Cs energy level diagram.

two-photon direct excitation of the Cs ground state to Cs 72D5/2, 3/2 followed by primary

infrared and visible transitions to the Cs 82P, 72P and 62P and secondary ultraviolet, blue

and NIR transitions to the Cs 62S 1/2 ground state.

This work extends the optically-pumped Cs vapor cell transition 62S 1/2 −→ 72D5/2

ultraviolet and blue emissions characterization study outlined in [40] by extending these

same emissions for the Cs vapor cell pump transition 62S 1/2 −→ 72D3/2. A functional form

equation detailed in [84] to quantitatively evaluate Rb near IR laser energy at 2.73 µm

and 2.79 µm for Rb vapor cell transitions 62P3/2,1/2 −→ 62S 1/2, respectively, was applied

in this study to assess the Cs ultraviolet and blue emissions. This equation, while not a

theoretical solution to the Cs vapor cell emission performance, is sufficient to represent the

pump threshold, bleached limit, slope efficiency dependence on pump energy providing

further validation for the functional fit. Last, this study extends the Cs vapor cell blue
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emission dependence on Cs vapor density outlined in [119] by including visible emissions

at 150°C and validating that pump pulse versus blue beam energy dependence detailed in

[119] include ultraviolet 82P3/2,1/2 −→ 62S 1/2 as well as blue 72P3/2,1/2 −→ 62S 1/2 emissions.

5.2 Experiment

Figure 5.2: Cs vapor Amplified Spontaneous Emission (ASE) laser apparatus.

The apparatus for the two-photon ultraviolet and blue emissions study for pump

transitions 62S 1/2 −→ 72D5/2, 3/2 is shown in Figure 5.2. A frequency-doubled Quanta-

Ray Pro Series pulsed Nd:YAG laser (10 Hz , 0 − 1 J/pulse, 532 nm) is used to pump a

Sirah model PRSC-D-1800 dye laser with LDS-765 dye tuned to populate the Cs 72D3/2

or 72D5/2 levels. The dye laser provides 6 − 10 ns pulses in a 1 mm radius spot as the

energy is tuned from 0 to 30 mJ/pulse by varying the Nd:YAG flash-lamp energy. A 2.5

cm diameter by 6.5 cm long Triad technologies cesium vapor cell with Pyrex windows
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was heated to 150 - 200°C. This is a low pressure cell with no buffer gases containing only

cesium at the natural isotopic abundance.

The target states, Cs 72D3/2 and Cs 72D5/2, are produced by two-photon absorption

of the ground state, Cs 62S 1/2, at wavelengths near 767.8 nm and 767.2 nm, respectively.

The transmitted pump and resulting stimulated beams were dispersed through a pellin-

broca prism, reflected off a smooth aluminum block and measured by the C31034A

photomultiplier tube using narrow bandpass filters to isolate the ultraviolet (UV), blue and

red beams. A combination of 25 mm diameter narrow bandpass filters were used for 387

nm, 388 nm, 455 nm and 459 nm emissions measurements. These filters included a thorlab

700 nm short pass filter with a 10 − 15% transition for UV/blue, edmund optics 452 nm

/45 nm bandwidth, a thorlab 390 nm /10 nm bandwidth, and specially made bandpass

filters from andover corporation (388.8 nm/1 nm bandwidth, 387.8 nm/1 nm bandwidth,

455.5 nm/3 nm bandwidth and 459.3 nm/3 nm bandwidth). Average power was measured

using an RjP-735 pyroelectric energy meter with a spectral response of 0.18− 20 µm and a

minimum detectable energy of 100 nJ.

Blue and UV beams were observed as the pump laser was tuned through the two-

photon absorption wavelengths. Visible images of the blue and UV beams and the

transmitted far red pump laser spots recorded after the pellin-broca prism for the Cs cell are

shown in Figure 5.3 and Figure 5.4 at distances of 0.5 m and 1.5 m, respectively. Images of

the blue and UV beams were taken by a Canon Digital Rebel XT DSLR Camera with EF-

S 18-55mm f3.5-5.6 zoom lens and 8.0-megapixel CMOS sensor and video was recorded

on a Kodak EasyShare C180 10.2-megapixel digital camera for UV, blue and red beam

emission analysis. The pump beam saturates the camera and the UV beams were captured

via florescence from a thin white paper background.

To validate that Cs alkali atoms emits various laser emissions at different wavelengths

when pumped on the two-photon Cs 62S 1/2 −→ 72D5/2, 3/2 transitions, a Cs heatpipe cell
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Figure 5.3: Beam emissions for the Cs cell in the forward direction at 0.5 m.

Figure 5.4: Beam emissions for the Cs cell in the forward direction at 1.5 m.
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is heated to 200°C, corresponding to a Cs vapor density of n = 1.82 × 1015 cm−3, to

produce the excitation spectrum show in Figure 5.5. The Cs DPAL cell path is a 12 cm

long and 2.54 cm diameter heatpipe pumped by the dye laser using LDS-765 dye at 10 mJ

per pulse. The heatpipe, described in detail in reference [61], was monitored by a MKS

Instruments 690A Baratron capacitance manometer to ensure emission measurements were

conducted while the heatpipe contained no or minimal non-Cs vapor gases. The Cs heatpipe

cell emissions were collected by SpectraPro-275 and McPherson-218 monochromators

to capture emissions from UV (> 386 nm) through NIR (< 1500) nm with resolutions

less than 0.1 nm, sufficient to differentiate between closely space Cs vapor emissions

such as 387.6 nm and 388.9 nm
(
82P3/2, 1/2 −→ 62S 1/2

)
and 697.3 nm and 698.3 nm(

72D5/2, 3/2 −→ 62P3/2

)
.

Figure 5.5: Cesium emission spectrum for λ = 386 nm to λ = 1472 nm for pulsed

excitation on the two-photon Cs 62S 1/2 −→ 72D5/2, 3/2 transitions at heatpipe cell temperature

T = 200°C.
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5.3 Results

These UV and blue Cs vapor laser emissions depicted in Figure 5.5 are consistent

with previous observations for ultraviolet 387.7 nm
(
82P3/2 −→ 62S 1/2

)
[40], blue 455.5

nm
(
72P3/2 −→ 62S 1/2

)
[40, 113, 119] and blue 459.3 nm

(
72P1/2 −→ 62S 1/2

)
[113, 119].

The short-wave infrared emissions depicted in Figure 5.5, wavelengths between 1300 nm

through 1500 nm, are consistent with measurements in reference [113]. No measurable Cs

vapor laser emissions in Figure 5.5 were observed between 870 nm through 1357 nm.

Figure 5.6 shows the evolution from fluorescence emission (heatpipe temperature

< 75°C) for laser beam output (heatpipe temperature > 100°C) for Cs emission 672.3

nm
(
72D3/2 −→ 62P1/2

)
. The experiment was originally performed using the equipment

setup detailed in [35] which used the Cs heatpipe for determining 72D spin-orbit rate

measurements. A frequency-doubled Quanta-Ray Pro Series pulsed Nd:YAG laser (10 Hz

, 0− 1 J/pulse, 532 nm) is used to pump a Sirah model PRSC-D-1800 dye laser with LDS-

765 dye tuned to populate the Cs 72D3/2 level. The Cs DPAL cell path is a 12 cm long

and 2.54 cm diameter heatpipe [61] and no buffer gas was used in this study. The target

state, Cs 72D3/2, is produced by two-photon absorption of the ground state, Cs 62S 1/2, at

wavelength 767.8 nm. The population of the excited state is measured using the C31034A

photomultiplier tube to detect the side fluorescence for temperatures at and below 75°C

and lasing emissions for Cs heatpipe temperatures at or above 100°C. The exact onset of

672.3 nm lasing was not determined; however, Figure 5.6 indicates 672.3 nm lasing onset

occurred between cell temperatures of T = 75°C and T = 100°C corresponding to Cs vapor

densities of n = 3.08×1012 cm−3 and n = 1.57×1013 cm−3, respectively. The rapid decrease

in intensity at T = 100°C after reaching its peak compared to longer measured decay rates

at T = 75°C and below, consistent with previous florescence decay profiles [35, 36], is

indicative of pulsed lasing activity. The time scale of these emissions for cell temperatures

≥ T = 100°C approaches pulses on the order of 20 ns to 30 ns, roughly two to three times
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the 10 ns pump pulse duration. Figure 5.6 also confirms previous observations made during

the 7D spin-orbit study [35] that for heatpipe temperatures above 75°C results in longer

decay rates caused by radiation being absorbed and remitted before escaping the heat-pipe.

The laser dye pump pulse at the entrance window of the heatpipe was approximately 16 mJ

per pulse.

Figure 5.6: Cs 672.3 nm
(
72D3/2 −→ 62P1/2

)
laser development from florescence Cs vapor

at T = 25°C through laser emissions at T = 100°C through T = 150°C.

Figure 5.7 shows 672.3 nm lasing output for Cs vapor cell temperature of 150°C for

pump beam energies less than 8 mJ using the equipment setup shown Figure 5.2. The target

state, Cs 72D3/2, was produced by two-photon absorption of the ground state, Cs 62S 1/2

at a wavelength near 767.8 nm. The lasing was detected by a C31034A photomultiplier

tube using narrow bandpass filters. A Thorlabs FES0750 shortpass filter with a cutoff

wavelength of 750 nm was used to minimize scattered pump light yet allow over 88%

transmission for 672.3 nm emissions. A second Andover Corp 670.8 nm filter with center

wavelength and 10 nm bandwidth filter was used in conjunction with the shortpass filter.

The 670.8 nm filter has a 66% transmission at 672.3 nm. The scattered pump laser intensity
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was measured and subtracted from the observed emission profiles by tuning off resonance,

thereby minimizing the scattered light contribution to the 72D3/2 −→ 62P1/2 transition

emission. Energy measurements could not be performed for 672.3 nm output beams due

to the minimal separation between red ASE and pump beam and associated damage risk

presented to the RjP-735 pyroelectric energy meter detector. Pump energies were kept

below 8 mJ per pulse due to saturation effects on the C31034A photomultiplier for pump

pulse energies above this energy per pulse level. 672.3 nm ASE was also observed for

vapor cell temperatures at 175°C and 200°C and initial indications suggest for a given

pump intensity, 672.3 nm ASE intensity increases for higher Cs alkali density. Clearly

672.3 nm lasing occurs at 150°C and beam output increases with increasing pump energies.

A more detailed analysis is required to determine how the Cs red beam output scales with

alkali density and pump intensity and what Cs vapor density is required for the onset of red

lasing.

Figure 5.7: Cs 672.3 nm
(
72D3/2 −→ 62P1/2

)
laser output for cell temperature T = 150°C

and pump energies of ◦ - 5.8 mJ, 2 - 6.9 mJ, and 4 - 7.6 mJ.
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The dependence of the ultraviolet and blue output energies on pump energy at three

temperatures for the pump transitions 62S 1/2 −→ 72D5/2 and 62S 1/2 −→ 72D3/2 are shown in

Figure 5.8 and Figure 5.9, respectively. Output energies grow linearly until pump pulse

energies of 6 − 8 mJ and gradually level off through the highest pump energy used at 31

mJ. For all emission wavelengths, the energies increase with cesium vapor density. The

uncertainty in the output energies represent the 95% confidence bounds for the associated

lasing intensities measured by the C31034A photomultiplier tube. A functional form, first

used and described in [84], was used to fit these results:

E = Em

(
1 − e−η((Ep−Eth)/Em)) , (5.1)

where

E = laser output energy per pulse.

Ep = pump dye laser energy per pulse.

Em = bleached limit for maximum output energy.

Eth = threshold pump energy.

η = initial slope efficiency.

Threshold conditions were achieved for both pump transitions for pump energies of

0.5− 3.5 mJ as shown in Figure 5.10. Error bounds in Figure 5.10 are reported for the 95%

confidence intervals for the Eth fit parameter.

Consistent with results reported in [84], for higher pump intensities, there are not

sufficient cesium atoms in the pumped volume to process all of the incident pump photons.

The population in the ground state is depleted and the pump transition becomes transparent.

As the alkali density increases the maximum output energy increases linearly, as additional

pump photons can be processed. The linear fits in Figure 5.11 indicates a small positive

intercept, which could be interpreted as a threshold requirement or may indicate minor

curvature at higher alkali densities. For both pump transitions, the trend is for the ultraviolet

emissions (387, 388) nm to reach higher bleached limits than the blue (455, 459) nm
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Figure 5.8: Ultraviolet (387 nm, 388 nm) and visible (455 nm, 459 nm) for pump

transition 62S 1/2 −→ 72D5/2 for three temperatures and corresponding Cs vapor densities:

(�) T = 150°C, n = 2.26 × 1014 cm−3,(#) T = 175°C, n = 6.81 × 1014 cm−3 and (4)

T = 200°C, n = 1.82 × 1015 cm−3.
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Figure 5.9: Ultraviolet (387 nm, 388 nm) and visible (455 nm, 459 nm) for pump

transition 62S 1/2 −→ 72D3/2 for three temperatures and corresponding Cs vapor densities:

(�) T = 150°C, n = 2.26 × 1014 cm−3,(#) T = 175°C, n = 6.81 × 1014 cm−3 and (4)

T = 200°C, n = 1.82 × 1015 cm−3.
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Figure 5.10: Dependence of the initial threshold energy, Eth, on cesium density when

pumping 62S 1/2 −→ 72D5/2 (open symbols) and 62S 1/2 −→ 72D3/2 (filled symbols) for 387

nm ( , ), 388 nm ( , ), 455 nm ( , ) and 459 nm ( , ) emissions.
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transitions; however, results from Equation (5.1) were insufficient to adequately capture the

Em for 387 nm emission for pump transition 62S 1/2 −→ 72D3/2. Error bounds in Figure 5.11

are reported for the 95% confidence intervals for the Em fit parameter.

Figure 5.11: Dependence of the maximum achieved output energy, Em, on cesium density

when pumping 62S 1/2 −→ 72D5/2 (open symbols) and 62S 1/2 −→ 72D3/2 (filled symbols) for

387 nm ( , ), 388 nm ( , ), 455 nm ( , ) and 459 nm ( , ) emissions.
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The slope efficiencies Figure 5.12 also improve as the Cs density increases. Threshold

for the ASE beams for both ultraviolet and blue occur for Cs densities at T = 120°C (Cs

density of n = 4.94 × 1013).

Figure 5.12: Dependence of initial slope efficiency, η, on cesium density when pumping

62S 1/2 −→ 72D5/2 (open symbols) and 62S 1/2 −→ 72D3/2 (filled symbols) for 387 nm ( , ),

388 nm ( , ), 455 nm ( , ) and 459 nm ( , ) emissions.
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5.4 Discussion

Both threshold and pump efficiency should depend on the absorption cross-section

and two-photon absorption cross-sections are quite low. While Cs two-photon cross-

sections have not been reported in the literature, calculations using a methodology outlined

in [16] predict two-photon cross sections for pump transitions 62S 1/2 −→ 72D5/2, 3/2 to be

5.96 × 10−21 cm4/W and 2.49 × 10−21 cm4/W, respectively. At the threshold pump energy

of 3 mJ (the low end of our pump energies), the corresponding pump intensity, I, is 2× 106

W/cm2. To derive the two-photon saturation intensity, consider the time dependence of the

excited state number density [13]:

dne

dt
=
σegI2

l

hνl
ng − Γne, (5.2)

where ne is the number density of the excited state, σeg is the two-photon cross section for

the ground state, g, to the excited state, e, in cm4/W, Il is the laser intensity, h is planck’s

constant, νl is the laser frequency, ng number density of the ground state and Γ is the total

decay rate from the upper level in sec−1. For the steady state condition, dne/dt = 0 and

Equation (5.2) becomes:
σegI2

l

hνl
ng − Γne = 0, (5.3)

which leads to
σegI2

l

Γhνl
=

ne

ng
, (5.4)

and from Equation (5.4) we define the two-photon saturation intensity as

I2
sat =

Γhνl

σeg
. (5.5)

The saturation intensities, Isat for pump transitions 62S 1/2 −→ 72D5/2, 3/2 are 3.13 × 104

W/cm2 and 4.83 × 104 W/cm2, respectively. With saturation parameters of S = I/Isat of 64

and 41, the sample is strongly bleached for both pump transitions.

Figure 5.5 shows the partial Cs emission spectrum from ultraviolet (> 386 nm)

through NIR (< 1500) nm for pump transitions 62S 1/2 −→ 72D5/2, 3/2. This figure shows
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the emission wavelength diversity at a temperature and associated Cs vapor density of

200°C and n = 1.82 × 1015 cm−3, respectively. Our emission results, in several cases, are

amplified extensions of the full Cs fluorescence from (> 360 nm) through NIR (< 1600)

nm reported in [52] with the exception of our recorded emission wavelengths 775.5 nm,

778.0 nm and 861.7 nm, which have no corresponding fluorescence signatures in [52].

The full spectrum Cs vapor measurements in [52] were taken at a cell temperature of

247°C (Cs vapor density of n = 8.94 × 1015 cm−3) after pump excitation of 455.7 nm(
62S 1/2 −→ 72P3/2

)
. The spectrum in [52] shows atomic transitions up to the ionization

limit. The different pumping schemes and Cs cell temperatures between our measurements

and the fluorescence spectrum in [52] may account for those emissions in our results not

seen in [52].

Figure 5.13: Combined ultraviolet 82P3/2, 1/2 −→ 62S 1/2 and blue 72P3/2, 1/2 −→ 62S 1/2

emissions ( ) and blue emissions ( ) from [119] after pulsed laser pumping of 62S 1/2 −→

72D3/2 at cell temperature of 200°C (Cs vapor density, n = 1.82 × 1015 cm−3).

Figure 5.13 shows pump power versus output emissions between our results and

those measured in [119]. The error bars in Figure 5.13 depict 1-sigma deviation from
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the respective mean values. Emission power measurements in [119] were taken using

a Coherent LM-3 HTD power meter with power range of 10 mW to 3 W and our

measurements were taken with a RjP-735 cavity pyroelectric energy probe with a minimal

detectable energy of 100 nJ and a maximum energy density of 1.0 J/cm2. Our results are

comparable to those collected in [119]. Considering only the blue emissions, 455 nm and

459 nm, for 200°C in Figure 5.9, these emissions alone can not account for the power

measurements in [119]. From our results, we noted that the ultraviolet and blue beam

emissions for pump transitions 62S 1/2 −→ 72D5/2, 3/2 do not significantly diverge from each

other until 1 m after leaving the Triad cesium vapor cell. The spectral content of the blue

beam in [119] was examined using a 0.5 m Triax monochromator but was not used to verify

the ultraviolet transitions 82P3/2, 1/2 −→ 62S 1/2 shown in this study and in [40] for similar

pump pulse transitions.

Reference [40] used a GCR200, Spectra Physics, Nd:YAG laser to pump an ND6000,

Continuum, dye laser to produce simultaneous ultraviolet and blue emission beams. The

pump transition used was 62S 1/2 −→ 72D5/2 to produce 387.7 nm
(
82P3/2 −→ 62S 1/2

)
and

455.6 nm
(
72P3/2 −→ 62S 1/2

)
emissions [40] as seen in this study. The cell used in [40] was

a quartz filled with metal Cs vapor under vacuum with a diameter of 2.5 cm and a length

of 10 cm and kept at a temperature of 200°C (Cs vapor density, n = 1.82× 1015 cm−3). The

emission beams were measured with an QE12SP-S-MT-D0, Gentec-EO energy detector

and the emission spectra were recorded using a SynerJY iHR320, HORIBA spectrometer

[40]. While the output pulse energy in [40] followed the same trend as this study, the

pumping pulse energy (mJ) threshold and trend in [40] was two orders of magnitude

smaller than reported in this study and in [119]. While we can not account for this pump

pulse energy discrepancy between our results and [40], our results follow a pump pulse

versus output pulse energy trend reported in [119]. Ultraviolet and blue emissions were not

recorded in [40] for pump transition 62S 1/2 −→ 72D3/2 and, although, this pump transition
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was used in [119], the ultraviolet emissions were not measured. This study reports the first

simultaneous observations for pump transition 62S 1/2 −→ 72D3/2.

Figures 5.8 and 5.9 show UV and blue beam output emissions scale linearly with

pump pulse energies below 6 − 8 mJ and gradually level off through higher pump pulse

energies. At the higher pump pulse energies, there are not sufficient Cs atoms in the

pumped volume to process all the incident pump photons. The Sirah model PRSC-D-1800

dye laser’s linewidth is 0.1 cm−1 (vlinewidth = 3 GHz) at 768 nm and the laser pump Doppler

broadening is given by

∆vD = 2vpump

√
2kbTln(2)

MCsc2 (5.6)

where kb is the Boltzmann constant, T is the cell temperature, MCs is the mass of the

neutral cesium atom and c is the speed of light. The Cs doppler broadening frequency for

cell temperatures of 150°C and 200°C are 0.99 GHz and 1.06 GHz, respectively. The pump

frequency, vpump, is given by vpump = 2vL = 3.911 × 1014 Hz (767 nm) or 3.906 × 1014 Hz

(768 nm) depending on pump transition 62S 1/2 −→ 72D5/2 or 62S 1/2 −→ 72D3/2, respectively.

The pump beam radius of 0.5 cm is consistent with previously measured in [119]

using the same laser apparatus and laser dye setup for previous Cs blue beam emission

characterization. The length of the Triad technologies cesium vapor cell is 6.5 cm with

Pyrex windows and the cross sectional area of the pump beam is 0.78 cm2 which gives a

pump volume of 5.11 cm3. To determine the pump energy level where the UV and blue

beam output emissions no longer scale linearly, we use the following relationship where

the ratio of the number of Cs atoms in the cell, for the given temperature, to the number of

pump photons for a given pump intensity approaches the ratio of the Cs doppler broadening

to pump laser linewidth

# Cs atoms
# pump photons

≡
∆vD

vlinewidth
≈ 1/3. (5.7)

For a pump volume of 5.11 cm3 and pump wavelength of 767 nm (3.91 × 1014 Hz),

Table 5.1 contains calculated ratios for Equation (5.7). For Cs vapor cell temperature of
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200°C, Table 5.1 indicates that between pulsed pump pulses of 7 − 8 mJ the UV and blue

beam output emissions begin to deviate from the linear scale and begin gradually leveling

off through higher pump pulse energies. For 175°C, the transition occurs for pump pulses

between 2 − 3 mJ and less than 1 mJ at 150°C. This is consistent from the power scaling

shown in Figures 5.8 and 5.9.

Table 5.1: Calculated ratio of number of Cs atoms to number of pulsed pump photons in

6.5 cm Pyrex Cs vapor cell.

Temperature Cs density # Cs atoms Pump energy # Pump photons # Cs atoms/# Pump photons

(°C) (cm−3) (mJ)

150°C 2.255 × 1014 1.151 × 1015 0.5 1.93 × 1015 0.596

150°C 2.255 × 1014 1.151 × 1015 0.75 2.90 × 1015 0.398

150°C 2.255 × 1014 1.151 × 1015 1 3.86 × 1015 0.298

150°C 2.255 × 1014 1.151 × 1015 2 7.72 × 1015 0.149

175°C 6.810 × 1014 3.477 × 1015 2 7.72 × 1015 0.450

175°C 6.810 × 1014 3.477 × 1015 3 1.16 × 1016 0.300

175°C 6.810 × 1014 3.477 × 1015 4 1.54 × 1016 0.225

175°C 6.810 × 1014 3.477 × 1015 5 1.93 × 1016 0.180

200°C 1.824 × 1015 9.314 × 1015 5 1.93 × 1016 0.482

200°C 1.824 × 1015 9.314 × 1015 6 2.32 × 1016 0.402

200°C 1.824 × 1015 9.314 × 1015 7 2.70 × 1016 0.345

200°C 1.824 × 1015 9.314 × 1015 8 3.09 × 1016 0.302

Figure 5.14 depicts the two cases for Cs UV laser emissions, 82P3/2, 1/2 −→ 62S 1/2,

after pulsed laser pumping of the 62S 1/2 −→ 72D3/2 transition, respectively. A fully-

coupled mathematically model to capture the dynamics of the Cs DPAL requires measured

transition probabilities between various possible cascade transition paths has yet to be
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Figure 5.14: Cs ultraviolet 82P3/2, 1/2 −→ 62S 1/2 emissions after pulsed laser pumping of

62S 1/2 −→ 72D3/2.

developed. A simplified model to investigate possible cascade lasing between the 7D, 8P

and ground state, 6S, are captured in the equations below.

For the case for pulse laser pumping of 62S 1/2 −→ 72D5/2 and assuming infinite Cs-

Cs mixing rate transitions for 7D and 8P fine structure states and infinite stimulated cross

sections for infrared and UV transitions, the equations to simultaneously solve are:(
6
2

)
n62S 1/2 − n72D5/2 = 0 (5.8)

n72D3/2 −

(
6
4

)
e(θ1)n72D5/2 = 0 (5.9)

n72D5/2 −

(
6
4

)
n82P3/2 = 0 (5.10)

n82P1/2 −

(
4
2

)
e(θ2)n82P3/2 = 0 (5.11)

n62S 1/2 + n72D5/2 + n72D3/2 + n82P3/2 + n82P1/2 = nTotal (5.12)
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where n is the number density for the specified energy level, θ1 = ∆7D/ (kbT ), and

θ2 = ∆8P/ (kbT ). For these conditions ∆7D = 21 cm−1, energy splitting of the 7D fine

structure, ∆8P = 83 cm−1, energy splitting of the 8P fine structure, kb = 0.695 cm−1/K and

T are temperatures 150°C (423.15 K), 175°C (448.15 K) and 200°C (473.15 K).

Similarly for the case for pulse laser pumping of 62S 1/2 −→ 72D3/2 and assuming

infinite Cs-Cs transition for 7D and 8P fine structure states, the equations to simultaneously

solve are: (
4
2

)
n62S 1/2 − n72D3/2 = 0 (5.13)

n72D3/2 −

(
6
4

)
e(θ1)n72D5/2 = 0 (5.14)

2n72D3/2 − n82P3/2 −

(
4
2

)
n82P1/2 = 0 (5.15)

n82P1/2 −

(
4
2

)
e(θ2)n82P3/2 = 0 (5.16)

n62S 1/2 + n72D5/2 + n72D3/2 + n82P3/2 + n82P1/2 = nTotal (5.17)

For cell temperatures of 150°C, 175°C and 200°C, the density of Cs atoms are

2.26 × 1014cm−3, 6.81 × 1014cm−3 and 1.82 × 1015cm−3, respectively. Table 5.2 shows

the resulting calculations of number density for temperatures 150°C, 175°C and 200°C for

pump transitions 62S 1/2 −→ 72D5/2,3/2.

The population inversions, ∆, for the ultraviolet transitions 82P3/2 −→ 62S 1/2 and

82P1/2 −→ 62S 1/2 are given by the following equations:

∆82P3/2−→62S 1/2
= n82P3/2 −

(
4
2

)
n62S 1/2 (5.18)

∆82P1/2−→62S 1/2
= n82P1/2 −

(
2
2

)
n62S 1/2 (5.19)

Using the appropriate calculated number densities in Table 5.2 and Equations (5.18)

and (5.19), Table 5.3 shows the resulting calculations for Cs UV 82P3/2,1/2 −→ 62S 1/2

population inversions for temperatures 150°C, 175°C and 200°C for pump transitions

62S 1/2 −→ 72D5/2,3/2.
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Table 5.2: Calculated number density resulting from simultaneously solving Equations

(5.8) - (5.12) for pump transition 62S 1/2 −→ 72D5/2 and Equations (5.13) - (5.17) for pump

transition 62S 1/2 −→ 72D3/2.

Number density (cm−3)

Alkali cell temperature

Pump transition Energy level 150°C 175°C 200°C

62s1/2 −→ 72D5/2 62S 1/2 1.707 × 1013 5.130 × 1013 1.368 × 1014

72D5/2 5.121 × 1013 1.539 × 1014 4.105 × 1014

72D3/2 7.154 × 1013 2.158 × 1014 5.778 × 1014

82P3/2 3.414 × 1013 1.026 × 1014 2.737 × 1014

82P1/2 5.155 × 1013 1.574 × 1014 4.257 × 1014

62s1/2 −→ 72D3/2 62S 1/2 3.254 × 1013 9.844 × 1013 2.641 × 1014

72D5/2 4.660 × 1013 1.404 × 1014 3.753 × 1014

72D3/2 6.509 × 1013 1.967 × 1014 5.283 × 1014

82P3/2 3.238 × 1013 9.681 × 1013 2.570 × 1014

82P1/2 4.890 × 1013 1.485 × 1014 3.998 × 1014

Table 5.3: Calculated Cs UV population inversion for pump transitions 62S 1/2 −→ 72D5/2,3/2.

Population inversion (cm−3)

Alkali cell temperature

Pump transition Emission 150°C 175°C 200°C

62S 1/2 −→ 72D5/2 82P3/2 −→ 62S 1/2 −0.004 0 0

82P1/2 −→ 62S 1/2 3.448 × 1013 1.061 × 1014 2.889 × 1014

62S 1/2 −→ 72D3/2 82P3/2 −→ 62S 1/2 −3.270 × 1013 −1.001 × 1014 −2.713 × 1014

82P1/2 −→ 62S 1/2 1.635 × 1013 5.004 × 1013 1.356 × 1014
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For a two-level system, the laser intensity propagation along the laser cavity is given

by [92]
dI
dz

=

[
A21

λ2

8πn2 g(v)
] [

N2 −
g2

g1
N1

]
I + ξ (chv) A21N2, (5.20)

where I is the intensity in the laser beam, A21 is the transition probability between energy

levels 2 and 1, λ is the laser wavelength, n is the index of refraction, g(v) is the lineshape

function, N2(1) is the number density for respective energy level, g2(1) is the degeneracy

number and ξ is the fraction of spontaneous photons emitted in the direction of beam

propagation in the laser cavity.

The stimulated emission cross section, σS E(v), and population inversion, ∆, are

defined as follows

σS E = A21
λ2

8πn2 g(v) (5.21)

∆ = N2 −
g2

g1
N1 (5.22)

and substitution into Equation (5.20) leads to

dI
dz

= σS E(v)∆ + ξ (chv) A21N2. (5.23)

Initially the only source of photons is the spontaneous term ξA21N2 in Equation (5.23).

As the lasing process continues the intensity from stimulated emission surpasses the

spontaneous term. If the spontaneous term is neglected and we assume a few seed photons

of intensity, I(z=0), then Equation (5.23) can be integrated directly. The solution indicates

that the laser beam intensity grows exponentially with propagation distance through the

cavity as shown below

I(z) = I(0)eσS E(v)∆z. (5.24)

Since the laser beam power is the intensity divided by the beams cross sectional area and the

calculated stimulated cross section areas for the Cs UV transitions are within 6% difference

over the temperature range for this study, the ratio of intensities should scale similarly
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with similar ratios for the population inversions. For 82P1/2 −→ 62S 1/2 the calculated

cross sections are 5.15 × 10−15 cm2 for 150°C and 4.88 × 10−15 cm2 for 200°C and for

82P3/2 −→ 62S 1/2, the cross sections are 2.20 × 10−14 cm2 for 150°C and 2.08 × 10−14 cm2

for 200°C. Given the small percent difference in the stimulated cross section calculations

from 150°C to 200°C, the measured power should scale in proportion to the population

inversions depicted in Table 5.3 for cascade lasing.

For both pump transitions 62S 1/2 −→ 72D3/2,5/2, Table 5.3 shows 388 nm
(
82P1/2 −→ 62S 1/2

)
population inversion (PI) scales as 1.0, 3.0 and 8.3 for ratios (150°C/150°C)PI , (175°C/150°C)PI ,

and (200°C/150°C)PI , respectively. Table 5.2 contains the ratios of 388 nm power outputs

using the form fit Equation (5.1) shown in Figures 5.8 and 5.9 at the 7 mJ pulsed pump

energy.

Table 5.4: Cs UV (388 nm) emission energies and ratios for 150°C, 175°C and 200°C.

388 nm pulse energy (nJ)

Alkali cell temperature Ratio

Pump transition 150°C 175°C 200°C (150°C/150°C)E (175°C/150°C)E (200°C/150°C)E

62S 1/2 −→ 72D5/2 28 125 252 1 4 9

62S 1/2 −→ 72D3/2 13 94 252 1 7 20

The ratios show in Table 5.4 are consistent for pump pulse energies from 6 mJ through

8 mJ. The ratios (1, 4 and 9) for pump pulse transition 62S 1/2 −→ 72D5/2 are consistent

with the calculated ratios (1, 3 and 8) for the population inversions for the same pump

pulse transition in Table 5.3. This comparison is an indication that cascade lasing may

play a major role in the Cs UV lasing process. For 62S 1/2 −→ 72D5/2, the energy ratios

are doubled those population inversion ratios using the values recorded in Table 5.3 for

(175°C/150°C)PI and (200°C/150°C)PI .
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While the analysis that led up to the population inversions listed in Table 5.3 supports

cascade lasing for the 388 nm emission for pump transition 62S 1/2 −→ 72D5/2, the analysis

does not adequately support cascade lasing for 388 nm emission for pump pulse 62S 1/2 −→

72D3/2 nor does the analysis’ results support the observed 387 nm
(
82P3/2 −→ 62S 1/2

)
emissions for both pump transitions 62S 1/2 −→ 72D5/2,3/2.

The first possible explanation to account for the differences between the results of

the UV population inversion analysis and observed UV output emissions is the various

transitions that occur from the 7D states back to the Cs ground state 6S . Tables 5.5 and 5.6

show the cascading transitions for pump pulse transitions 62S 1/2 −→ 72D5/2, 3/2, respectively.

The transitions are consistent with the Cs emission spectrum in Figure 5.5, either

observed transitions or cascading transitions leading up to these emissions. These

transitions are arranged in descending order of the measured or calculated transition

probabilities. Derived transition probabilities used the Weakest Bound Electron Potential

Model (WBEPM) theory outlined in [25, 26, 143] and using the radial dipole integral

for hydrogenic atoms described in [32]. The WPEPM transition probability equations

derivation and subsequent cross section calculations are outlined in Appendix A.

Tables 5.5 and 5.6 reflect over 18+ transitions that may lase and bottleneck and

possibly re-lase before undergoing the UV output emissions. A fully-coupled kinetics

model needs to be developed to capture all these transitions and would be more complicated

that the analysis used to calculate the population inversions in Table 5.3 for cascade lasing.

A high-level Cs kinetics model is described in section 6.3.2 and may capture the cascading

events given correct spin-orbit cross sections in the P and D states and measured and

calculated transition probabilities for the various inter-multiplet transitions outlined in

Tables 5.5 and 5.6 and other transitions not captured in these tables.

The second possible explanation to account for the differences between the results of

the UV population inversion analysis and observed UV output emissions is Equations 5.8
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Table 5.5: Transition wavelengths, probabilities and cross sections for several dipole

allowed transitions of cesium at 200°C for pump transition 62S 1/2 −→ 72D5/2.

Wavelength Transition prob. Cross section Transition prob.

Transition λ (nm) A (106 s−1) σ (cm2) reference

72D5/2 −→ 82P3/2 36066.6 0.052 2.25 × 10−9 *

82P3/2 −→ 82S 1/2 6782.6 0.956 2.75 × 10−10 *

82S 1/2 −→ 72P3/2 4218.1 2.620 1.81 × 10−10 *

62D5/2 −→ 72P3/2 14592.4 0.063 1.81 × 10−10 *

72P1/2 −→ 72S 1/2 3096.1 3.520 9.64 × 10−11 *

72P3/2 −→ 72S 1/2 2931.8 4.050 9.42 × 10−11 *

82S 1/2 −→ 72P1/2 3918.8 1.380 7.66 × 10−11 *

72D5/2 −→ 72P3/2 2425.8 2.768 3.65 × 10−11 *

72S 1/2 −→ 62P3/2 1469.9 11.400 3.34 × 10−11 *

82P3/2 −→ 62D5/2 3164.7 0.746 2.18 × 10−11 *

62P3/2 −→ 62S 1/2 852.3 32.790 1.87 × 10−11 [105]

72S 1/2 −→ 62P1/2 1359.2 6.230 1.44 × 10−11 *

72P1/2 −→ 52D3/2 1376.3 1.590 3.82 × 10−12 *

72D5/2 −→ 62P3/2 697.5 8.543 2.67 × 10−12 *

72P3/2 −→ 52D5/2 1360.6 1.100 2.56 × 10−12 *

82P3/2 −→ 72S 1/2 1378.2 0.565 1.36 × 10−12 *

72P3/2 −→ 62S 1/2 455.7 1.840 1.61 × 10−13 [126]

72P1/2 −→ 62S 1/2 459.4 0.793 7.10 × 10−14 [126]

82P3/2 −→ 62S 1/2 387.7 0.386 2.08 × 10−14 [75]

82P1/2 −→ 62S 1/2 389.0 0.090 4.88 × 10−15 [75]
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Table 5.6: Transition wavelengths, probabilities and cross sections for several dipole

allowed transitions of cesium at 200°C for pump transition 62S 1/2 −→ 72D3/2.

Wavelength Transition prob. Cross section Transition prob.

Transition λ (nm) A (106 s−1) σ (cm2) reference

72D3/2 −→ 82P1/2 29498.6 0.058 1.38 × 10−9 *

72D3/2 −→ 82P3/2 39012.8 0.010 5.44 × 10−10 *

82P1/2 −→ 82S 1/2 7185.5 0.835 2.86 × 10−10 *

82P3/2 −→ 82S 1/2 6782.6 0.956 2.75 × 10−10 *

82S 1/2 −→ 72P3/2 4218.1 2.620 1.81 × 10−10 *

72P1/2 −→ 72S 1/2 3096.1 3.520 9.64 × 10−11 *

72P3/2 −→ 72S 1/2 2931.8 4.050 9.42 × 10−11 *

82S 1/2 −→ 72P1/2 3918.8 1.380 7.66 × 10−11 *

72S 1/2 −→ 62P3/2 1469.9 11.400 3.34 × 10−11 *

62D3/2 −→ 72P3/2 15566.0 0.009 2.99 × 10−11 *

82P1/2 −→ 62D3/2 3205.1 0.733 2.23 × 10−11 *

82P3/2 −→ 62D5/2 3164.7 0.746 2.18 × 10−11 *

62P3/2 −→ 62S 1/2 852.3 32.790 1.87 × 10−11 [105]

72D3/2 −→ 72P1/2 2335.1 1.594 1.87 × 10−11 *

72S 1/2 −→ 62P1/2 1359.2 6.230 1.44 × 10−11 *

72P1/2 −→ 52D3/2 1376.3 1.590 3.82 × 10−12 *

72P3/2 −→ 52D5/2 1360.6 1.100 2.56 × 10−12 *

82P3/2 −→ 62D3/2 3122.4 0.086 2.42 × 10−12 *

72D3/2 −→ 62P1/2 672.5 5.840 1.64 × 10−12 *

82P1/2 −→ 72S 1/2 1394.1 0.364 9.10 × 10−13 *

72D3/2 −→ 62P3/2 698.5 2.008 6.31 × 10−13 *

72P3/2 −→ 62S 1/2 455.7 1.840 1.61 × 10−13 [126]

72P1/2 −→ 62S 1/2 459.4 0.793 7.10 × 10−14 [126]

82P1/2 −→ 62S 1/2 389.0 0.090 4.88 × 10−15 [75]
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through 5.12 and Equations 5.13 through 5.17 do not include non-linear effects. Previous

studies have offered four wave mixing, a third order non-linear event, as the mechanism

responsible for the blue light generation in Cs blue emissions [119], Cs blue and UV

emissions [40] and Rb blue emission [3]. Recently, [1] offered population inversion and

four wave mixing as possible mechanisms for generating Rb blue emissions. The kinetics

model mentioned previously would be key to explore differences in the modeled Cs blue

and UV emissions and observations by considering cascade lasing only. Only after these

differences are analyzed, incorporating four wave maxing to model any differences will

help understand whether or not these effects are cascade population inversion alone, four

wave mixing alone or a combination of these two processes.

A third possible explanation to account for the differences is investigating the role of

photo-ionization in a Cs DPAL laser as described in previous studies [62, 86]. At 200°C,

the Cs density is 1.82× 1015 cm−3. For the Pyrex cell used in this experiment, the length of

the cylinder is Lcell = 6.5 cm with a pump beam cross sectional area of Apump = 0.79 cm2.

The number of Cs atoms contained in the pump beam column is

#Cs atoms = n0LcellApump

= 1.82 × 1015 cm−3 × 6.5 cm × 0.79cm2

= 9.31 × 1015 Cs atoms

(5.25)

It takes three photons at vpump = 3.91×1014 Hz to ionize a single Cs atom. The total energy

required to ionize the column is

3hvpump × 9.31 × 1015 Cs atoms = 7.24 mJ (5.26)

The 7.24 mJ is on order of the pump energy used to excite the Cs atoms in this experiment.

If any of the Cs atoms are excited above the Cs ionization limit, Cs ions and electrons

recombine to populate Rydberg levels above the Cs 7D state. Energy levels at or below

7D are re-populated by radiative relaxation from the Rydberg states. This is a possible
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explanation for the observed UV emissions at 387 nm but not predicted by the population

inversion analysis in Table 5.3. Last, it is possible that all three of these processes, cascade

lasing, four wave mixing and photo-ionization are occurring simultaneously in the UV and

blue emissions.

5.5 Conclusions

Stimulated emission on the ultraviolet and blue transitions in Cs has been achieved

by pumping via two-photon absorption from the ground state to the 72D states. The

performance of the optically-pumped cesium vapor laser operating in ultraviolet and blue

has been extended to 650 nJ/pulse for 387 nm, 1.3 µJ/pulse for 388 nm, 200 nJ/pulse for

455 nm and 500 nJ/pulse for 459 nm. Emission performance improves dramatically as the

cesium vapor density is increased. No scaling limitations associated with energy pooling

or ionization kinetics have been observed. Potential applications for this new laser system

include underwater communications and infrared countermeasures such as blinding heat

seeking missiles.
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VI. Conclusions

6.1 Work Summary

This work measured, for the first time, the spin-orbit (SO) cross section for the Cs

72D states using buffer gases He and Ar. This study also confirmed previous SO mixing

rates and cross sections for Cs 82D states and put both 72D and 82D SO measurements in

terms of adiabaticity theory. The final portion of this work was to characterize the Cs UV

and visible emissions resulting from the pump transitions 62S 1/2 → 72D5/2, 3/2. Specific

results from these three studies are listed below.

First, pulsed excitation on the two-photon Cs 62S 1/2 −→ 72D3/2,5/2 transition results

in time-resolved fluorescence at 697 nm and 672 nm. The rates for fine structure mixing

between the 72D3/2,5/2 states have been measured for helium and argon rare gas collision

partners. The mixing rates are very fast, 1.26 ± 0.05 × 10−9 cm3/(atom sec) for He and

1.52 ± 0.05 × 10−10 cm3/(atom sec) for Ar, driven by the small energy splitting and large

radial distribution for the valence electron. The quenching rates are considerably slower,

6.84± 0.09× 10−11 cm3/(atom sec) and 2.65± 0.04× 10−11 cm3/(atom sec) for He and Ar,

respectively. The current results are placed in context with similar rates for other alkali-rare

gas collision pairs using adiabaticity arguments.

Second, pulsed excitation on the two-photon Cs 6 2S 1/2 −→ 8 2D3/2, 5/2 transition

results in time-resolved fluorescence at 601 nm. The rates for fine structure mixing

between the 8 2D3/2, 5/2 states have been measured for helium and argon rare gas collision

partners. The mixing rates are very fast, 2.6 ± 0.2 × 10−9 cm3/(atom s) for He and

5.2±0.4×10−10 cm3/(atom s) for Ar, about 2-3 times faster than for the Cs 7 2D5/2 
 7 2D3/2

relaxation. The quenching rates are also rapid, 1.07 ± 0.04 × 10−10 cm3/(atom s) and

9.5±0.7×10−11 cm3/(atom s) for He and Ar, respectively. The rapid fine structure rates are

explained by the highly impulsive nature of the collisions and the large average distance of
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the valence electron from the nucleus. Quenching rates (intra-multiplet transfer) are likely

enhanced by the closely spaced, 9 2P levels.

Third, stimulated emission on the ultraviolet and blue transitions in Cs has been

achieved by pumping via two-photon absorption for the pump transition 62S 1/2 →

72D5/2,3/2. The emission performance of the optically pumped cesium vapor laser operating

in ultraviolet and blue has been extended to 650 nJ/pulse for 387 nm, 1.3 µJ/pulse for 388

nm, 200 nJ/pulse for 455 nm and 500 nJ/pulse for 459 nm. Emission performance improves

dramatically as the cesium vapor density is increased and no scaling limitations associated

with energy pooling or ionization kinetics have been observed.

6.2 DPAL Impact

Major advancement for kilowatt-class lasers have been achieved since Krupke

proposed diode-pumped alkali lasers as a potential kilo-watt class laser candidate [70].

While major advancements have been made in developing kilo-watt class lasers for a

variety of defense platforms [58], decreasing the size, weight and power requirements for

kilo-watt class lasers continues to be a challenge for future 6th generation fighter aircraft.

High laser power and wavelength diversity described in [23, 56, 129] are key for developing

laser based countermeasures for defeating future surface-to-air and air-to-air missiles.

While this study demonstrated laser output in the ultraviolet and visible spectrums,

work remains in characterizing the wavelength diversity in the short-, mid- and long-wave

alkali emission wavelengths. While the HEL community continues to diode-pumped alkali

lasers from the 10s to 100s kilo-watt range, DPALs just might become a strong candidate

to match or surpass previous high energy lasers such as the the chemical oxygen iodine

laser (COIL) used in the Airborne Laser program. The possibility for a DPAL to emit laser

output from the ultraviolet to long-wave with a possibility to reach average powers of 10s

of watts at these diverse wavelengths make it a suitable laser candidate to address future

threats [23, 129].
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6.3 Recommendation for future work

6.3.1 Deleterious Processes in the Cesium DPAL Cell.

Deleterious processes, due to complex interactions in a DPAL gain cell, have been

simulated using an advanced computational fluid dynamics model and, as an example,

observed in the lab by Oliker et al. [89] and Zhdanov et al. [142], respectively. Initial

motivation for investigating these processes started with recent ionization studies such as

those performed by Knize et al.[62] and Ge et al. [43]. Because alkali metals have the

lowest ionization energy than any other element groups on the periodic table, these studies

investigated the impact of photoionization on Rb and Cs alkali laser performance. Further

study is required to determine the extent of ionization as a loss mechanism to DPALs neutral

alkali atoms in the gain cell.

Oliker et al. [89] lists several key deleterious processes that may impact DPAL

kinetics. These processes include: dissociative recombination, multi-photon ionization,

alkali-hydrocarbon reaction and electron impact ionization, alkali number density decrease

in high temperature regions, convective flow, pressure broadening and shifting of

the absorption lineshape including hyperfine structure, radiative decay, quenching,

energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative

recombination, three-body recombination due to free electron and buffer gas collisions,

ambipolar diffusion, and thermal aberration. Its possible that one or several of these

deleterious processes may be impacting our experiments.

Further data collections and analysis of data already collected will be necessary to

explore any potential deleterious effects mentioned above that may be impacting our results.

A first principle model containing the rate equations and ionization rates should also be

included in this analysis to explore the underlying kinetics of similar measurements. A

thorough review of the journal literature reveals no study such as the one proposed here has

been performed.
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6.3.2 Full kinetic theory model to explain UV and blue laser emissions.

Despite the success of observing and characterizing blue and UV beams for Cs

transitions 62S 1/2 → 72D5/2,3/2 and 62S 1/2 → 82D5/2,3/2, there remains significant work on

understanding the full kinetics involved on the two-photon absorption blue and UV beams.

Models to understand portions of the kinetics involved in the blue and UV beam have

been developed and used to explain specific transition events for blue and UV fluorescence

and beams [20, 22, 28, 31, 35, 40, 52, 119]; however, a full scale analytical model of

the kinetic two-photon absorption and subsequent blue and UV beam mechanisms are

required to evaluate the scaling and the efficiency of this system. Additionally the Cs

two-photon absorption cross sections for 62S 1/2 → 72D5/2,3/2 and 62S 1/2 → 82D5/2,3/2

must be measured and model development of production mechanism dependence when

a pressure broadening gas is added to this particular DPAL class system. Following the

kinetic study, an attempt should be made to produce a true laser in both the blue and UV

simultaneously for both pulsed and cw systems. Once a kinetic study and model is created

for replicating the blue and UV beams, an extensive study should begin on understanding

the role that cascade lasing and whether or not 4-wave mixing plays occurs simultaneously

in generating blue and UV ASE [2, 3, 40, 49, 87, 117].

One such modeling scheme, depicted in Figure 6.1, is a seven-level model that

includes photo-ionization, recombination, and cascade stimulated emission from either Cs

72D5/2,3/2 energy level back to the ground level 62S 1/2. The first four levels (blue lines)

depict the two-photon pumping from 62S 1/2 → 72D5/2,3/2 and cascade lasing from level 4

eventually back to the ground state 62S 1/2 at level 1. The black lines are the decay rates

between the respective levels and the purple double arrow line between levels 3 and 4 is the

is the spin-orbit rate. In Figure 6.1, the spin-orbit rate is shown for 72D3/2 
 72D5/2.

This model incorporates photo-ionization from the 72D5/2,3/2 levels. It takes three

photons at 3.91 × 1014 Hz to ionize a single Cs atom. This frequency is equivalent to
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Figure 6.1: Schematic seven level energy diagram with two-photon pumping and cascade

lasing.

the pump wavelength, 767.263 nm, required to pump Cs atoms via two-photons from the

ground state to 72D5/2,3/2. The ionization limit for Cs atoms is 31423.9 cm−1 and the

three photon energy is 39126.2 cm−1. Levels 7 and 6 (green lines) contain the Cs+ and

e− formed by photo-ionization respectively from levels 3 and 4. Cs+ and e− loss is by three

body recombination that produces population in level 5 (orange line). Level 5 Contains all

Rydberg levels above the two-photon pumped 72D levels up to the ionization limit. Levels

3 and 4 are re-populated by radiative relaxation from level 5 (red lines).

Figure 6.1 is a high-level depiction of a fully coupled model that includes photo-

ionization, recombination, and cascade stimulated emission; however, what is not captured

are the spin-orbit rates between the 8 − 62P3/2,1/2 and 6 − 52D5/2,3/2 states and the many

allowed transitions between the various D, P and S states back to the ground state. Many

of these possible transitions to include measured and calculated transition probabilities and

cross section were shown in tables 5.5 and 5.6.
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Appendix: Electric Dipole Line Strength Calculation

The electric dipole line strength for transitions between two excited levels is given by

√
DLS = (−1)2l+ j′+3/2

√
(2 j + 1) (2 j′ + 1) (2l + 1) (2l′ + 1)

×

 l s j

j′ 1 l′


 l 1 l′

0 0 0


×

∫ ∞

0
r3Rnili (r) Rn f l f (r) dr

(A.1)

where

s = spin quantum number

l, l′ = orbital angular momentum quantum number for intial, final states

j, j′ = total angular momentum quantum number for intial, final states l s j

j′ 1 l′

 = Racah coefficient or Wigners 6-j symbol

 l 1 l′

0 0 0

 = Wigner 3-j symbol

∫ ∞

0
r3Rnili (r) Rn f l f (r) dr = radial transition integral

According to the WBEPM theory, electronic radial wave functions, Rnili (r) and

Rn f l f (r), are presented as a function of Laguerre polynomial. These functions are

represented as

Rnl (r) =

(
2Z∗

n∗

)l∗+3/2 [
2n∗

(n − l − 1)!
Γ (n∗ + l∗ + 1)

]−1/2

× exp
(
−

Z∗r
n∗

)
rl∗L2l∗+1

n−l−1

(
2Z∗r

n∗

) (A.2)
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where

n = principal quantum number

l = orbital angular momentum quantum number

Z∗ = effective nuclear charge

n∗ = n + d ≡ effective principal quantum number

l∗ = l + d ≡ effective orbital angular momentum quantum number

d = modifies the integer quantum numbers n and l

L2l∗+1
n−l−1

(
2Z∗r

n∗

)
= generalized Laguerre polynomial

In order to solve this radial wave function Rnl (r), Z∗,n∗ and l∗ parameters must be known.

These parameters are obtained by solving the following equations:

I =
Z∗2

2n∗2
(A.3)

〈r〉 =
3n∗2 − l∗ (l∗ + 1)

2Z∗
(A.4)

where

I = Ionization energy

〈r〉 = expectation value for radius of weakeast bound electron

The transition probability is given by

Ai j = 2.0261 × 10−6

(
E j − Ei

)3

(2 j′ + 1)
× DLS (A.5)

where

Ei, E j = Energy levels of the initial and final states
(
cm−1

)
j′ = total angular momentum quantum number for final state

DLS = electric dipole line strength
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The stimulated emission cross sections in Tables 5.5 and 5.6 are derived from

σS E (v) = Ai j
λ2

8πn2 g (v) (A.6)

where

Ai j = Transition probability
(
s−1

)
from Equation A.5

λ = center emission wavelength

n = index of refraction

g (v) = line-shape function (s)

The line-shape function, g (v), is given by

g (v) =

(
4ln (2)
π

)2 1
∆vD

(A.7)

where

∆vD =

(
8kbTln (2)

MCsc2

)
v0

kb = Boltzmann constant

T = Temperature of the vapor cell

MCs = Mass of Cs atom

c = speed of light

v0 = center frequency of the transition
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[98] Pimbert, M. “Transfert d’excitation électronique, par collision atomique, entre
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